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Abstract

Currently, most sentiment analysis
techniques are primarily applied to general
texts such as social media or news reports,
and there is still a relative gap in emotion
recognition within the medical field. Self-
reflection involves communication
between individuals and their inner selves,
which has a positive impact on people's
future lives. This article aims to design a
classification model for reflective texts
aimed at medical professionals to fill gaps
in sentiment analysis within the medical
field. This task used a BERT model, trained
on a dataset from the Chinese EmoBank,
and evaluated using the test set provided by
the ROCLING 2025 Dimensional
Sentiment Analysis — Shared Task. The
assessment results show that Valence and
Arousal's PCC scores are 0.76 and 0.58
respectively, while the MAE scores are
0.53 and 0.82, respectively.
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1 Introduction
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2 METHODS
2.1 Model Architecture
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2.1.2 BertTokenizer
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2.2 Tokenization and Encoding
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2.3 Feature extraction
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2.4 Word embedding
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2.5 Multi task
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3 EXPERIMENTS

3.1 Datasets
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3.2 Authentication and Evaluation
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4 RESULTS

4.1 Validation dataset
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4.2 Test dataset
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