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摘要 

目前大多數的情感分析技術主要應用

於一般性文本，如社交媒體或新聞報

導，對於醫學領域中的情感識別仍屬

相對空白。自我反思包含個人與內在

自我的交流，對於人們未來的生活有

正向影響。本篇旨在針對醫學領域相

關人員的反思文本，設計出回歸模型，

以填補醫學領域在情感分析的空缺。

本次任務採用 BERT 模型，配合 

Chinese EmoBank 的資料集進行訓練，

以 ROCLING 2025 Dimensional 

Sentiment Analysis – Shared Task所提供

的測試集進行評估，評估結果顯示 

Valence 和 Arousal 的 PCC 分別是 0.76、

0.58；而 MAE 的分數分別為 0.53、0.82。 

Abstract 

Currently, most sentiment analysis 

techniques are primarily applied to general 

texts such as social media or news reports, 

and there is still a relative gap in emotion 

recognition within the medical field. Self-

reflection involves communication 

between individuals and their inner selves, 

which has a positive impact on people's 

future lives. This article aims to design a 

classification model for reflective texts 

aimed at medical professionals to fill gaps 

in sentiment analysis within the medical 

field. This task used a BERT model, trained 

on a dataset from the Chinese EmoBank, 

and evaluated using the test set provided by 

the ROCLING 2025 Dimensional 

Sentiment Analysis – Shared Task. The 

assessment results show that Valence and 

Arousal's PCC scores are 0.76 and 0.58 

respectively, while the MAE scores are 

0.53 and 0.82, respectively. 

關鍵字：BERT、皮爾森相關係數、平均絕對誤

差 

Keywords : BERT, PCC, MAE 

1 Introduction 

近年來，隨著深度學習技術日漸發達，本研

究使用雙向編碼器 BERT (Bidirectional Encoder 

Representations from Transformers) 實現一個給

醫學領域人員記錄並反思自己的文本。由於 

BERT 可以針對許多自然語言處理 NLP 

(Natural Language Processing) 任務進行微調且

應用範圍廣泛，微調（fine-tuning）對模型效

能有明顯影響，特定領域語料的再訓練

（domain-specific retraining）也更能提升準確

性[10]。本研究結合了自然語言處裡及分類式

情緒分析以紀錄醫學領域人員的情感分數。

使用維度式的情緒分析比傳統情緒分類法

（如正面／負面）可以提供更細緻的分析[12]。 

  有別於英文，中文文本在語意上經常面

臨許多問題，如分詞、語意等，因此本研究

使用 BertTokenizer 進行分詞，採用 WordPiece 

方法，適合用於中文 BERT 模型，將文本切分

成子詞 (subword)，再透過特徵向量和詞嵌入

的方式回歸 Valence 和 Arousal 的分數。 

  在文本情緒分析的領域中，Calvo 與 Kim

（2013）比較了兩種主要的情緒分析模式，

以情緒標籤為基礎的「分類式」和以連續情

緒維度（Valence、Arousal、Dominance）為基

礎的「維度式」。研究顯示，維度模型能在心

理學展現優勢。為後續將心理理論整合到自

然語言處理的情緒辨識提供了重要基礎[2]。 

2 METHODS 

2.1 Model Architecture  

本研究設計了一個模型來完成本次任務，使

用 BERT 中文預訓練模型 (bert-base-chinese) 進

KOLab at ROCLING-2025 Shared Task:   

Research on Emotional Dimensions in Chinese Medical Self-Reflection Texts 
 

 Chia-Yu Chan, Chia-Wen Wang, Jui-Feng Yeh 

 Department of Computer Science and Information Engineering, National Chiayi 

University 

 {s1112929,s1112946,ralph}@mail.ncyu.edu.tw 

 

 

413



 

 
 

行，並實現分詞。本模型的任務為提取文本

中的每個詞的 Valence 和 Arousal 的特徵向量，

去進行 Valence 和 Arousal 的分數計算。 

 

2.1.1 BERT 

BERT 模型，主要為 NLP 模型中的編碼器。框

架包括兩個步驟：預訓練和微調。 在預訓練

期間，模型在不同的預訓練任務上對未標記

的資料進行訓練。 而在微調方面，BERT 模型

首先用預訓練參數進行初始化，然後使用來

自下游任務的標記資料微調所有參數。 雖然

每個下游任務都有單獨的微調模型，但它們

都是用相同的預訓練參數初始化的[4]。 

在預訓練中採用 masked language model (MLM) 

是 BERT 重要的預訓練任務，用於建立雙向上

下文推理能力[3]。其學習目標是預測文本中

被隨機遮蔽的詞，利用上下文兩側的信息進

行推斷；Next Sentence Prediction (NSP)，為了

提升 BERT 模型在捕捉長程依存關係（long-

term dependencies）方面的能力，訓練過程中

引入了下一句預測任務（Next Sentence 

Prediction, NSP），在此任務中，模型需判斷

「序列 B 是否為序列 A 的後續內容」。若屬

於，序列 A 與序列 B 會從同一文件中依照自

然順序抽取：若不屬於，則序列 A 與序列 B 

會隨機取樣。透過此設計，模型得以學習文

本片段之間的語義連貫性與上下文關聯性，

進而加強對篇章結構的理解能力[6]。BERT 的

雙向 Transformer 架構能捕捉上下文語義，在 

NLP 任務中表現突出[9]。 

 

2.1.2 BertTokenizer 

分詞（Tokenization）是指將輸入文本劃分為

子單位，稱為詞元（tokens）。這些詞元之後

會被用於自然語言處理的後續步驟，例如形

態分析（morphological analysis）、詞性標註

（word-class tagging）以及句法分析（parsing）

[5]。 

    Tokenizer 是 NLP 的核心元件之一。 由於模

型只能處理數字，因此需要標記器 Tokenizer 

將輸入的文本轉換為模型可處理的數據。 

 

2.1.3 WordPiece 

WordPiece 是 Google 為預訓練 BERT 而開發的

標記化算法[11]，其在訓練方面與 BERT 相似，

但實際標記化方式不同。WordPiece 是從一個

小詞彙表開始，包括模型使用的特殊標記和

初始字母表。WordPiece 將文本切分成子詞單

位，如「學習中文」可能被分成 ['學'， '##習'， 

'中'， '##文']，且每個單詞最初是通過將該前

綴添加到單詞內的所有字符來拆分的，前綴 

## 表示這個 token 是前一個 token 的延伸。 

 

2.1.4 模型架構 

 

圖 1. 模型架構圖 

 

2.2 Tokenization and Encoding  

在本研究中採用 BERT 中文模型 (bert-base-

chinese) 內建的 WordPiece 分詞系統對輸入文

本進行分詞。模型在輸入文本時首先被轉換

為 token 序列，並限制最大長度為 256。並且

每個 token 帶有位置的編碼以及注意力遮罩 

(attention mask)，以符合 BERT的輸入格式。 

 

2.3 Feature extraction 

在本次任務中使用了 CVAW 作為詞典。當文

本輸入並進行分詞後，模型將會檢查文本中

的詞彙是否存在詞典中，若存在將提取相對

應的 Valence 和 Arousal 的特徵，若不存在將會

將數值補充為 [0.0, 0.0] ，並生成對應的情緒特

徵向量，供模型後續使用。 

 

2.4 Word embedding 
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詞嵌入（Word Embedding）是一種詞彙表示方

法，透過將詞語嵌入到實數向量空間中，將

離散的文字轉換為連續數值，並使語意相近

的詞語在向量空間中具有相近的位置表示[1]。 

在本研究中採用的 BERT 模型中，詞嵌入 

(Word Embedding) 可以將文字符號轉為模型可

處理的向量表示。在 BERT 中包含了三種嵌入，

分別是詞嵌入 (Token Embeddings)、分段嵌入 

(Segment Embeddings) 和序列位置的嵌入 

(Position Embeddings)。詞嵌入負責將詞彙轉

換為向量表示，分段嵌入用於區分不同句子

的片段，而位置嵌入則為序列中的每個 token 

添加位置訊息。三者相加後形成最終的輸入

嵌入向量，進一步輸入模型中的編碼器，完

成後續的上下文語意建模。 

    為了更好的得到文本中的情緒特徵，本研

究在 BERT 原始的嵌入基礎上額外使用了 

CVAW 中文情緒字典的情緒向量（Valence 與 

Arousal 分數），並將其與 BERT 的嵌入層進

行融合。使得模型在獲取上下文語意的同時，

輸入來自 CVAW 中文字的情緒特徵，為每個 

Token 提供額外的 Valence 和 Arousal 的資訊。

兩種向量在嵌入層融合後再經由線性層進行

回歸，最終同時輸出 Valence 和 Arousal 的預測

值。 

 

2.5 Multi task 

本研究將 Valence 與 Arousal 的預測視為一個多

任務迴歸問題。對於輸入的文本，模型會同

時輸出 Valence 預測值與 Arousal 預測值。故採

用了多任務加權去強化模型在學習計算

Valence 跟 Arousal 的權重，並使用均方誤差 

(MSE) 作為基礎去計算損失函數。其中均方誤

差 MSE 和損失函數 (Loss) 的計算如下列公式

所示。 

 

MSE = 
1

𝑛
* ∑ (𝑦𝑖

𝑛
𝑖=1 − 𝑦′𝑖)

2 

 

Loss = α*MSE(Valence)+β*MSE(Arousal) 

 

MSE公式中，其中 n代表樣本數量，𝑦𝑖代表實

際分數，𝑦′𝑖代表模型預測出的分數。在 Loss

公式中，α  代表 Valence 在模型學習的權重， 

β  則代表 Arousal 的權重，在本研究中所占權

重分別為 0.6和 0.4，此設計使模型在訓練過程

中能更側重於效價的準確預測，同時兼顧喚

醒度的表現，達到兩者間的平衡。 

 

3 EXPERIMENTS 

3.1 Datasets 

本次任務所使用的資料集為中文情緒資料集 

Chinese Emobank [7] 中的中文情緒文本 (CVAT) 

及中文情緒字典 (CVAW) 。其中的資料包含中

文單字 (或文本) 並包含了情緒效價 (Valence) 

和喚醒度 (Arousal) 的分數，均以浮點數標註。

情緒效價表示情緒的正面和負面情緒的程度，

喚醒度表示平靜和興奮的程度。兩個維度的

數值範圍均為 1（非常消極或平靜）到 9（非

常積極或興奮）。  

    中文情緒字典 (CVAW) 共包含了 5,512個單

字，中文情緒文本 (CVAT) 共包含了 2,969 句

中文文本。 

 

3.2 Authentication and Evaluation 

本研究中使用了皮爾森相關係數 (PCC) 和 平

均絕對誤差 (MAE) 作為評估模型的指標。其

中 PCC 是一個介於 -1 和 1 之間的值，用於衡

量實際值和預測值之間的線性相關性；而

MAE 的理論範圍最低值為 0、最高值為 8 。而

越低的 MAE 值和越高的 PCC值，代表了模型

預測效能準確越高。兩者指標定義如下列公

式所示。 

 

MAE = 
1

𝑛
∑ |𝑎𝑖 − 𝑝𝑖|
𝑛
𝑖=1  

 

PCC = 
1

𝑛−1
∑ (

𝑎𝑖−𝜇𝐴

𝜎𝐴
)𝑛

𝑖=1 (
𝑝𝑖−𝜇𝑃

𝜎𝑃
) 

 

在 MAE 的公式中，其中 n 代表樣本數量，𝑎𝑖
為預測值，𝑝𝑖是真實值。在 PCC 的公式中，

其中 (
𝑎𝑖−𝜇𝐴

𝜎𝐴
)、𝜇𝐴  及 𝜎𝐴  分別是 𝑎𝑖  的樣本的標

準分數、樣本平均值和樣本標準差。 

4 RESULTS   

4.1 Validation dataset 

在本次任務中，此模型在驗證集的表現如下

表所示。評估結果顯示 Valence 和 Arousal 的 

415



 

 
 

PCC 分別是 0.716、0.508；而 MAE 的分數分

別為 0.613、1.079。 

 

Valence 

PCC 

Valence 

MAE 

Arousal 

PCC 

Arousal 

MAE 

0.716 0.613 0.508 1.079 

表 1. 驗證集中的表現 

4.2 Test dataset 

在本次任務中，此模型的在測試集實驗結果

如下表所示，評估結果顯示 Valence 和 Arousal 

的 PCC 分別是 0.76、0.58；而 MAE 的分數分

別為 0.53、0.82。在本次競賽[8]中的最終排名

得到了第五名的成果。  

 

Valence 

PCC 

Valence 

MAE 

Arousal 

PCC 

Arousal 

MAE 

0.76 0.53 0.58 0.82 

表 2. 實驗結果 

5 CONCLUSIONS 

在本次的任務中，主要運用了 BERT 中文預訓

練模型，其中用了 BertTokenizer 進行分詞，，

從文本的詞彙中提取特徵向量並融合透過詞

嵌入得到的文字向量，從而得到 MAE 及 PCC 

的數值。此外，此研究也透過多任務加權的

方式來調整模型在 Valence 和 Arousal 分數上

學習的權重讓模型可以更好的針對不足的方

面加強。在實驗過程中發現模型仍有需加強，

使其有更好的結果。未來將運用於醫療領域，

可更加清楚的得知醫療相關人員內心真實想

法，也可作為醫護人員壓力偵測與心理輔助

的基礎模型。 
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