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Abstract

Misinformation rarely presents itself as en-
tirely true or entirely false. Instead, it
often embeds partial truths within mis-
leading contexts, creating narratives that
blur the boundary between fact and false-
hood. Traditional binary fact-checking
frameworks fail to capture this nuance,
forcing complex claims into oversimplified
categories. To address this gap, we intro-
duce MEGA, a multidimensional graph
framework designed to classify ambiguous
claims, with a particular focus on those
labelled “Somewhat True” MEGA in-
tegrates event evidence, spatio-temporal
metadata, and a quantifiable nuance score.
Its Event Candidate Extraction (ECE)
module identifies supporting or contradict-
ing evidence, while the Nuance Control
Module (NCM) injects or removes nuance
to assess its effect on classification. Experi-
ments show that nuance is both detectable
and learnable: adding nuance improves
borderline discrimination, while stripping
it leads the decisions toward false extremes
and conceals partial truth. Our top model
—nuance-injected without score weighting
—improve accuracy and F'1 score by 15 and
16 points over the claims-only baseline, and
6 and 9 points over the ECE-only variant.
These results show that explicitly modeling
nuance alongside context is crucial for clas-
sifying mixed-truth claims and advancing
fact-checking beyond binary judgments.

Keywords: Misinformation detection,
Linguistic nuance, Event-guided evidence

1 Introduction

The rapid growth of online media has fu-
eled an overwhelming spread of misinforma-
tion (Sharma et al., 2019; Hu et al., 2025a).
Because misleading narratives often inter-
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weave genuine facts with distortions, separat-
ing truth from fiction has become increasingly
difficult. Traditional fact-checking pipelines,
built on binary true/false labels (Wang et al.,
2020a), are ill-suited for claims that fall
into the borderline category—especially those
tagged Somewhat True. Such claims typically
contain accurate information that is exagger-
ated, stripped of context, or paired with omis-
sions (Rashkin et al., 2017), making their clas-
sification inherently challenging.

This challenge connects to the notion of
certainty, long studied in pragmatics and
discourse through phenomena such as epis-
temic modality, evidentiality, doubt, and
hedging (Rubin, 2007). These signals express
how confidence is conveyed, and in compu-
tational terms can be characterised by po-
larity (support vs. contradiction) and inten-
sity (strength of stance). Yet, recent work
on causal epistemic consistency demonstrates
that current language models struggle to re-
main stable when distinguishing such fine-
grained cues (Cui et al., 2025). Motivated by
these limitations, we manually analysed 150
Somewhat True claims and observed recurring
linguistic patterns: hedging markers (“may,”
“could”), context-sensitive phrasing, and con-
trastive framing. These are not new facts, but
structural signals—indicating that Somewhat
True is not merely a midpoint between False
and True, but a distinct category shaped by
nuance.

Building on this observation, we design two
key modules. A Nuance Control Mod-
ule (NCM) manipulates hedging and ambi-
guity markers to probe how linguistic fram-
ing influences classification. An Event Can-
didate Extraction (ECE) module retrieves
and summarises event-level snippets as exter-
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nal evidence, grounding claims in verifiable
context. Together, these modules allow us to
test whether nuanced linguistic cues help or
hinder borderline judgments, and motivate our
inclusion of score-aware evidence that weights
semantic, temporal, spatial, and nuance fea-
tures.

To integrate these signals, we propose the
Multidimensional Event-Guided Analy-
sis Graph (MEGA), a graph-based frame-
work that links claims to event evidence and
metadata while encoding semantic, temporal,
spatial, and nuanced relations. Experimental
results show that injecting nuance improves
performance in borderline cases: our best con-
figuration, a nuance-injected model without
score weighting, achieves a 15-point and 16-
point improvement on accuracy and F1 scores
over the claims-only baseline. Conversely, re-
moving nuance pushes decisions toward ex-
tremes and obscures partial truths. These find-
ings demonstrate that explicitly modelling nu-
ance, alongside contextual evidence, is essen-
tial for reliable classification of mixed-truth
claims.

The key contributions are:

o Nuance Control Module (NCM) —
injects or removes hedging, conditional,
and ambiguity markers to test framing ef-
fects.

MEGA —a configurable graph that links
claims to event evidence, metadata, and
linguistic nuance features via semantic,
temporal, spatial, and nuanced edges.

Event Candidate Extraction (ECE)
—automatically retrieves and summarises
real-world events for each claim.

Score-Aware Graph Construction —
weights edges with temporal, spatial, se-
mantic, and nuance scores to prioritise
high-quality evidence.

2 Related Work

Research on misinformation has been exten-
sively explored, with many studies adopting
a binary classification approach. For exam-
ple, Wang et al. (2020b) propose WEFEND, a
reinforcement learning framework designed to
filter noisy crowd-sourced reports, addressing
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the challenge of limited labeled data. While
effective for binary fake news detection, WE-
FEND assumes all claims are either entirely
true or entirely false, overlooking borderline
or ambiguous cases. Earlier work on multi-
class datasets has shown that mixture labels
in between true and false are often predicted
as hoaxes, mapping mostly to false (Torabi Asr
and Taboada, 2018). Not accounting for this
gray area can weaken detection, since some on-
line users employ half-truths as propaganda to
mislead readers (Hazra and Majumder, 2024).
This stresses the importance of considering
gray-area class labels. Using the PolitiFact
dataset with six labels, the subquestion-based
approach (Chen et al., 2022) improved multi-
class veracity prediction, yet overall perfor-
mance remained modest, highlighting the diffi-
culty of distinguishing fine-grained cases such
as half-true.

Beyond label design, model architecture also
introduces limitations. ICP-BGCN (Hu et al.,
2025b) combines tweet content and propaga-
tion structure into a graph but ignores exter-
nal evidence, leaving it prone to echo-chamber
bias. FrameTruth (Wang et al., 2024) ex-
tracts misleading narrative frames with an
LLM, yet its text-only scope overlooks tempo-
ral, spatial, and source-level context. CAM-
OUFLAGE (Bethany et al., 2025) rewrites
claims with hedges and ambiguity to evade
detectors, but treats hedging solely as adver-
sarial noise rather than an informative signal.
More recently, Tang et al. (2025) introduced
POLITIFACT-HIDDEN, a 15k-claim dataset
annotated with omitted evidence and intent,
and proposed TRACER, a framework that
models omissions for half-truth detection. In-
tegrated with existing verifiers, TRACER im-
proved Half-True F1 by up to 16 points, un-
derscoring the need to capture hidden context
for trustworthy verification.

While several prior studies have explored
half-truths, mixture labels, and omitted evi-
dence (Chen et al., 2022; Tang et al., 2025),
none have explicitly modelled linguistic nu-
ance as the primary learnable signal for deter-
mining borderline claims. Existing approaches
often collapse such borderline statements into
either "True” or "False,” overlooking the lin-
guistic and contextual subtleties that define



partial truths. To the best of our knowledge,
MEGA is the first framework to operational-
ize Somewhat True as an independent, learn-
able class, treating nuance not as noise but as
a structural feature that bridges the gap be-
tween traditional binary classification and a
more complex real-world claims.

In summary, prior work often relies on
binary labels, internal propagation graphs,
or text-only framing models, and sometimes
treats linguistic nuance as noise. Our frame-
work addresses this by modelling nuance with
both a controllable module and a scoring mech-
anism, while incorporating event evidence and
spatio-temporal metadata into the verification
process.

3 Methodology

Our proposed framework, MEGA (Multidi-
mensional Event-Guided Analysis), addresses
the challenge of classifying borderline misin-
formation claims by combining real-world ev-
idence, metadata, linguistic tone, and quality
signals into a unified graph-based architecture.
Our framework has four stages: (1) Event Can-
didate Extraction (ECE), (2) Nuance Control
Module (NCM), (3) Evidence-Quality Assess-
ment Score (EQAS), and (4) MEGA graph
construction and classification.

3.1 Event Candidate Extraction(ECE)

The first step is to link each claim ¢; (with
metadata m; = (date,platform)) to exter-
nal real-world evidence. = We retrieve an
event snippet e; by generating structured
queries using named entities extracted with
spaCy (Honnibal et al., 2020), temporal ex-
pressions identified via rule-based patterns,
and platform-specific keywords.These snippets
were submitting to a Sear XNG-powered search
interface (SearXNG, 2021) for multi-engine
lookups. Retrieved passages are embedded
with Sentence-BERT (Reimers and Gurevych,
2019), clustered semantically, and summarised
into a single factual event snippet e;.

If search or clustering fails, we return a
short “no reliable event context found” note,
so downstream steps always receive a clear, in-
terpretable output.
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3.2 Nuance Control Module (NCM)

We change tone, not facts. This module
manipulates the linguistic tone of event candi-
dates before they are scored and selected, ad-
justing each event snippet e; to convey vary-
ing levels of clarity, ambiguity, or caution. In
this paper, linguistic tone refers to surface cues
that influence how a statement is read—such
as hedges and modality (“may”, “could”), con-
ditionality (“if”, “unless”), attribution (“ac-
cording to..”), and contrast markers (“how-
ever”, “but”). The presence and strength of
these cues are referred to as nuance.

We apply linguistic reframing to modify
these nuances without adding or removing fac-
tual content. Specifically, we define two trans-
formation mechanisms (Figure 1):

1. Nuance injection — introduces hedg-
ing/ambiguity (e.g., “reportedly”, “sug-
gests”, “appears to”).

2. Nuance removal — celiminates those

markers to make the same content more as-
sertive.

Formally, let e; denote the event snippet re-
trieved by ECE for claim ¢;. The NCM gen-
erates two rewrites: an injected version e
(adds hedging/ambiguity cues) and a removed
version e (strips them). Each experimental
variant uses exactly one of these downstream;
for brevity, we write

e € {e;nj, e;"™ }.

We generate e;nj and e using Qwen2.5-
14B-Instruct hosted locally via Ollama with
fixed prompts and parameters to ensure consis-
tency and reproducibility (Bai et al., 2023; Ol-
lama, 2023). Only the event snippet is rewrit-
ten; the claim ¢; remains unchanged. The re-
sulting pair (¢;, e}) is then used for Evidence-
Quality Assessment Score (EQAS) and node-
feature construction. This setup lets us di-
rectly measure how framing influences classi-
fication—especially for Somewhat True class.

3.3 Evidence-Quality Assessment
Score (EQAS)

For each pair of claim and event snippet
(ci,ef), we compute a four-dimensional score
vector S = {sr, Ss, Spm, SN}



S

Extracted
Events

The bill may cut
benefits next year

LLM-XOR

-1

Nuance
Added

Analysts suggest the
bill could cut
benefits next year

Nuance
Removed

The bill cuts
benefits next year

Figure 1: Nuance Control Module (NCM). Given
the extracted event snippet, NCM applies one
rewrite: inject hedging/ambiguity or remove it,
producing two alternative snippets used in our vari-
ants.

Temporal specificity (sp) —precision
of temporal references in e}, determined
via rule-based parsing of explicit dates
and scaled to [0, 1].

Spatial specificity (sg) —granularity
of location mentions in e;, mapped by
rule-based city /region/country resolution
to [0, 1].

Semantic similarity (sjs) —cosine sim-
ilarity between Sentence-BERT embed-
dings of ¢; and e} (Reimers and Gurevych,
2019).

Nuance score (sy) —strength of hedg-
ing or ambiguity cues in e, assigned by
a locally hosted Qwen2.5-14B-Instruct us-
ing a short rubric; computed only when
NCM is enabled (Bai et al., 2023).

For
[ST,is 85,is SM.i» SN,i s
when NCM is disabled.

The score set S serves two purposes:
(i) pruning edges via adaptive, type-specific
thresholds, and (ii) augmenting node features
during graph construction, which will be done
in the next stage.

we denote
with sy

claim ¢, S

omitted

3.4 MEGA Graph Construction and
Classification

Node Features. FEach data point is d; =
(ci, mi,yi), where ¢; is the claim text, m; =
(date, platform) is metadata, and y; € {0, 1,2}
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is the gold label (Completely False, Some-
what True, True). We encode: (1) ¢; with
SBERT — ¢;; (2) m; into z; using date buck-
ets and platform one-hots; (3) e into EQAS
si = (87,0, 588, SM,i» SNi)- The node feature is:

w; = [t; || 2 || enc(e]) || si],

where enc(-) is the SBERT embedding of e!.
y; is used only for training and evaluation pur-
poses.

Graph and pruning. We construct a
claim—evidence graph G over all claims, where
each node v; is assigned the feature vector x;.
Edges connect nodes whose claims and associ-
ated events are similar in semantic, temporal,
or spatial terms, with the corresponding simi-
larity scores stored as edge features.

Adaptive pruning. Using only the train-
ing split, we examine the distribution of each
edge-score type (semantic, temporal, spatial)
and select one cutoff per type (e.g., a chosen
percentile). These cutoffs are then fixed and
applied unchanged to validation and test splits
to avoid leakage. An edge (i,j) is retained if
it meets the semantic threshold, or if it satis-
fies both the temporal and spatial thresholds.
We further keep only the top-k most similar
neighbours (by semantic score) for each node
to prevent any single node from dominating
the graph. When the Nuance Control Module
(NCM) is active, we increase the thresholds for
edges whose endpoints have higher average nu-
ance, sy = W%, making the gate stricter
when reframing is more ambiguous. This en-
sures that only well-supported links are pre-
served in high-nuance contexts.

Classifier. We employ a standard Graph
Attention Network (GAT) without architec-
tural modifications (Velickovi¢ et al., 2018).
The combination of edge-aware construction
and adaptive pruning biases the model toward
stronger, contextually grounded relationships
while reducing noise from weak or misleading
connections.

3.5 Dataset and Labelling

We collect fact-checked claims from Politi-
Fact (2007—2024) (PolitiFact, 2024), includ-
ing claim text, publish date, platform, and the
original veracity label. PolitiFact uses six la-
bels: Pants on Fire, False, Mostly False, Half
True, Mostly True, and True.



Model Configuration Scores NCM
Claims only No No
Claims + metadata No No
ECE only No No
ECE + EQAS ST,85,5M No
Nuance injected (no EQAS) SN Yes
Nuance removed (no EQAS) SN Yes
sN-only SN Yes
Full MEGA All Yes
Contrastive removal SN Yes
ECE Core Isolation No No
Positional bias No No

Table 1: Feature and edge model configurations
used in the experiments

For our experiments, we relabel to three
classes to separate outright falsehoods, clear
truths, and ambiguous cases:

e Completely False —merge Pants on
Fire + False

e Somewhat True —merge Half True +
Mostly True

e True —keep True as-is

We exclude Mostly False due to inconsis-
tent annotation patterns and class imbalance
in our corpus, which would introduce noise
into the three-class distinction we aim to evalu-
ate. The final dataset contains 26,500 labelled
claims after cleaning (removing nulls, dupli-
cates, extreme-length outliers, and formatting
noise). For a balanced evaluation, we sam-
ple 6,000 claims (2,000 per class) with a fixed
seed and use this same subset across all exper-
iments.

4 Experiments

4.1 Experimental Setup

We conducted extensive experiments across
multiple model configurations as shown in
Table 1. All models use two GAT lay-
ers with a hidden size of 256 and 8 at-
tention heads (Velickovié¢ et al., 2018), with
each node linked to its top-7 semantic neigh-
bours. Training uses cross-entropy loss, the
AdamW optimiser with a learning rate of
5x10~* (Loshchilov and Hutter, 2019), early
stopping after 25 epochs without improve-
ment, and a dropout rate of 0.30. We
use sentence-BERT all-mpnet-base-v2 to en-
code the text (Reimers and Gurevych, 2019).
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Model F1-Score by Class | Acc.
T | SW True | CF

Baseline Models

Claims only 58 63 60 60

Claims + metadata 64 64 62 63

Real-World Context

ECE only 72 65 70 69

Nuance Control Variants

(no EQAS)

Nuance injected T 74 73 75

Nuance removed 74 70 72 72

Nuance-injected (EQAS)

per dimension

Nuance Score (sn) 78 80 71 T

Contextual only 7 74 73 74

Temporal only 78 75 70 76

Spatial only ad 76 72 75

Spatial + Contextual 71 74 71 74

Spatial + Temporal 78 75 74 76

Contextual + Temporal e 75 71 74

Full MEGA 76 74 73 74

Table 2: Performance metrics across models con-
figurations. Abbreviations: T = True; SW True =
Somewhat True; CF = Completely False; Acc.
Accuracy. The values are in percentage, applied
for all the subsequent tables

The dataset is split into 70% training, 10%
validation, and 20% test sets, stratified by
class. We evaluate performance using Ac-
curacy and per-class F1, and analyse confu-
sion matrices to investigate misclassification
boundaries, particularly for cases near deci-
sion edges (Fawcett, 2006). Unless otherwise
stated, all tables report the same 20% test split
with identical thresholds and prompts carried
over from training.

4.2 Results and Discussion

Impact of External Evidence. Baseline
models highlight the difficulty of claim clas-
sification without real-world context. The
claims-only model reached just 60% accuracy,
with weak performance across all labels (Ta-
ble 1). Adding metadata such as platform and
date improved accuracy by 3%, showing lim-
ited discriminative value on its own. A larger
gain came from external evidence: incorpo-
rating ECE snippets raised accuracy to 69%.
This supports the premise that linking claims
to real-world events provides factual anchors
through temporal and spatial cues. However,
the model continued to struggle with Some-
what True, motivating the need for additional
signals.

Nuance injection. The next significant
shift occurs when the Nuance Control Mod-



ule (NCM) introduces hedging and ambigu-
ity into event snippets. Accuracy rises to
75%, with Somewhat True F1 improving by +9
points over ECE-only. Gains are also consis-
tent for True and False classes. These improve-
ments indicate that the model is not simply
relaxing decision criteria but exploiting tone-
related cues that clarify borderline distinc-
tions. In particular, hedging and contrastive
phrasing sharpen the boundary between Some-
what True and both extremes, showing that lin-
guistic nuance functions as a meaningful signal
rather than noise.

Nuance removal. When nuance is removed
from the event snippet, the performance still
improves compared to the base ECE configu-
ration, with Somewhat True rising from 65%
to 70% and overall accuracy from 69% to 72%.
However, this configuration falls short of the
injection gains, with Somewhat True reach-
ing 74% and accuracy 75% under injection.
This gap suggests that removing linguistic cues
helps reduce some confusion but also strips
away information that could aid the model in
identifying fine-grained distinctions. Without
these cues, the boundary between True and
Somewhat True becomes less defined, and cer-
tain borderline cases may be pushed toward
the wrong side of the decision threshold. The
fact that removal still performs better than
base ECE implies that not all nuance is help-
ful, and in some contexts, tone markers may
distract the model from content-based reason-
ing.

Nuance as Isolated Signal. To examine
the effect of linguistic nuance in isolation, the
Nuance Score sy is used as a probe in two set-
tings: using only sy, and applying the same
score to versions where nuanced phrasing has
been removed. Using only sy yields the high-
est overall accuracy at 77% and the strongest
Somewhat True F1 at 80%, surpassing the Full
MEGA configuration, which achieves 74% ac-
curacy. When sy is applied to the stripped
versions, performance declines in proportion to
the amount of nuance removed, indicating that
sy captures the influence of linguistic tone
rather than memorising content. The compar-
ative results are shown in Table 3. The values
for nuance injection and removal differ from
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Configuration T | SW True | CF | Acc.
Nuance injection 78 80 71 T
Nuance removal 78 72 72 75
Contrastive removal | 72 64 70 69

Table 3: Nuance Score sy variants.

Score Config. T | SW True | CF | Acc.
Contextual only 75 66 69 70
Temporal only 73 7 70 70
Spatial only 72 63 70 68
Spatial + Contextual 71 65 71 69
Spatial + Temporal 75 67 71 71
Contextual + Temporal | 76 65 71 70
All combined 73 66 70 70

Table 4: EQAS applied to base ECE.

those in the previous table because this experi-
ment measures the effect of nuance alone, with-
out other cues. This indicates that sy alone
is a strong proxy for linguistic tone.

The Effect of Evidence-Quality Assess-
ment Score (EQAS) Module. Applying
EQAS on top of the base ECE produces
only modest changes in performance (Table 4).
Overall accuracy ranges from 68% to 71%,
with the highest at 71% for the Spatial + Tem-
poral configuration, a gain of two points over
ECE-only at 69%. The Temporal-only setting
pushes the Somewhat True F1 to 77% but does
not raise overall accuracy beyond 70%. Other
configurations mostly exchange small gains be-
tween classes without a consistent advantage.
While these results show that EQAS adds use-
ful signal, its contribution is secondary to the
larger improvements achieved through nuance.

When nuance is reduced—either by remov-
ing all nuanced phrasing or only contrastive
cues—EQAS still provides measurable but
modest gains (Tables 5 and 6). Temporal
and spatial scores occasionally lift accuracy by
up to two points over the base setting, with
Temporal-only and Spatial-only configurations
performing best in their respective contexts.
This shows that EQAS retains value even with-
out nuanced language, but its effect is smaller
and less consistent than when nuance is pre-
served (see Table 2).

Full MEGA Configuration. Full MEGA
is the complete configuration of our frame-
work, combining the ECE evidence snippet



Score Config. T | SW True | CF | Acc.
Contextual only 72 73 72 72
Temporal only 44 75 74 75
Spatial only 74 72 72 73
Spatial + Contextual 73 T4 72 73
Spatial + Temporal s 75 73 75
Contextual + Temporal | 70 73 70 71
All combined 74 74 71 74

Table 5: EQAS with all nuance removed.

Score Config. T | SW True | CF | Acc.
Contextual only 72 66 70 69
Temporal only 74 66 71 70
Spatial only 76 66 70 71
Spatial + Contextual 73 66 70 70
Spatial + Temporal 73 66 69 69
Contextual + Temporal | 75 69 70 71

Table 6: EQAS after contrastive removal.

ei, an NCM rewrite €], and all EQAS scores
S = {sr,ss,5Mm,SN}, which are encoded in
the node features and also used as edge sig-
nals in the graph. As shown in Table 2, this
configuration delivers strong and balanced per-
formance across classes, although it is not the
top performer for Somewhat True, where the
nuance-injected model without EQAS achieves
slightly higher F1 and accuracy. We eval-
uated both configurations on unseen claims,
keeping all thresholds, hyper-parameters, and
model settings fixed. Both maintain an F1 of
75% on Somewhat True, indicating that the
nuance signal generalises beyond the training
distribution. Full MEGA achieves the highest
overall accuracy in this setting (77% vs. 76%
for the nuance-injected variant) by combining
temporal and spatial gating with semantic ev-
idence, which slightly reduces off-class errors
(Table 7).

We therefore regard Full MEGA as the
comprehensive, stability-oriented configura-
tion, while the nuance-injected variant with-
out EQAS remains the most effective for bor-
derline detection.

Model Variant T | SW True | CF | Acc.
Nuance-injected ECE | 77 75 75 76
Full MEGA 78 75 76 7

Table 7: Generalisation performance on unseen
claims
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Nuance Config. T | SW True | CF | Acc.
Original (front-loaded) | 77 74 73 75
Mid-loaded 75 72 73 73
Back-loaded 74 7 73 75

Table 8: Impact of shifting nuance position within
a claim.

4.3 Diagnostics: Examining Model
Behaviour

We conducted three controlled experiments to
disentangle the contribution of linguistic nu-
ance from other model cues: (1) Positional
Bias —hedging cues (e.g., “may cause”) were
moved to different positions in the sentence
(front, middle, end) to test whether their lo-
cation influences predictions. (2) Contrastive
Framing —rhetorical pivots such as “however”
and “although” were removed to evaluate re-
liance on explicit discourse contrast. (3) Core
Isolation —each event was reduced to its fac-
tual core, removing all hedging, elaboration,
and contextual detail, to assess how structural
simplification affects classification.

Structural dependency via positional
bias. The positional bias test examined
whether the location of nuance changes the
model’s decision-making. As shown in Table 8,
shifting hedging cues had minimal effect, with
only a 2% drop in accuracy for mid-position
placement. This suggests the model’s detec-
tion of nuance is not tied to its syntactic loca-
tion but rather to its lexical and semantic pres-
ence in the sentence. Performance stability
across positions indicates that nuanced phras-
ing is treated as a content-level signal rather
than a positional signal.

Contrastive removal (rhetorical pivots).
The contrastive framing test evaluated the im-
pact of removing explicit discourse markers
that signal rhetorical shifts. Compared to the
Full MEGA baseline, removing cues such as
“however” and “although” reduced accuracy
(Table 9), with the largest relative drop in
Somewhat True performance. These pivots
typically mark stance changes or qualifications,
making them especially informative for detect-
ing borderline or mixed-truth claims. Their re-
moval reduces the model s ability to recognise
such shifts, confirming that contrastive phras-
ing acts as a nuance-like signal in classification.



Model F1-Score by Class | Acc.
T | SW True | CF

Nuance-Focused Baselines

Nuance injection 7 74 73 75

Nuance Score (sy) 78 80 71 77

Full MEGA 76 74 73 74

Structural Diagnostics

Contrastive removal 76 68 72 72

ECE Core Isolation 79 83 76 80

Table 9: Comparison of nuance-focused models
and structural diagnostic variants

Core isolation (higher-accuracy pitfall).
Finally, we investigated the effect of stripping
away all structural tone. The Core Isolation
variant (which reduces events to bare factual
statements without hedging or contextual de-
tail) yielded the highest raw accuracy among
non-EQAS settings (Table 9), but this cre-
ated a problematic trade-off. As shown in
the confusion matrices (Figures 2-3), predic-
tions skewed toward extreme labels, particu-
larly Completely Fulse. Counts rose from 259
in the nuance-injected variant to 307 under
Core Isolation, with "True” — "False” errors
increasing from 12 to 18, and Somewhat True
— 7False” from 46 to 54. Thus, accuracy gains
came at the cost of misclassifying borderline
cases, indicating sharper but less calibrated de-
cision boundaries.

Interpreting the results. FEvent ground-
ing (ECE) was necessary but not sufficient—
linking claims to real-world events provided
the first performance lift. The decisive change
came from linguistic nuance: injecting hedg-
ing and conditional cues prevented the collapse
of borderline cases into extremes, allowing the
model to treat nuance as a distinct, learnable
signal rather than noise. In contrast, Core Iso-
lation simplified the problem rather than solv-
ing it, improving accuracy for the wrong rea-
son by inflating binary decisions.

Nuance therefore acts as a dual-role struc-
tural signal. As text, it consistently stabilises
Somewhat True predictions; as a graph fea-
ture, it retains influence via the nuance score,
providing a direct input for model reasoning.
These effects are position-independent, and
contrastive phrasing behaves similarly to nu-
ance, broadening the operational definition of
nuanced language. EQAS complements this
by anchoring decisions to temporal, spatial,
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NUANCE INJECTION

COMPLETELY
FALSE

SOMEWHAT
TRUE

TRUE

COMPLETELY
FALSE

SOMEWHAT
TRUE

PREDICTED

TRUE

Figure 2: Confusion matrix for ECE with nuance
injection.

CORE ISOLATION

COMPLETELY
FALSE

TRUE

SOMEWHAT

TRUE

COMPLETELY
FALSE

SOMEWHAT TRUE

TRUE
PREDICTED

Figure 3: Confusion matrix for the ECE core iso-
lation experiment.

and semantic context, but its impact is sec-
ondary when strong tone cues are present.
Overall, the most robust configuration is ECE
+ Nuance Injection (no EQAS), which pre-
serves calibration on borderline content while
still generalising effectively to unseen claims.

5 Conclusion

Nuance stands out as the signal that de-
fines our approach to misinformation detec-
tion. Real-world event grounding provides ev-
idential anchoring, but it is the modelling of
tone—hedging, conditionality, and contrast—
that consistently enables accurate recognition



of partial truths. This effect holds regard-
less of where cues appear, showing that their
strength comes from presence, not position.
Other signals, like temporal, spatial, and se-
mantic scores, add stability but do not replace
the interpretive weight of nuance. By embed-
ding this signal into both the evidence and the
graph, we show that subtle language patterns
are not noise, but essential, learnable features
for distinguishing misinformation with preci-
sion.

Limitations and Future Works

Our framework adopts a relatively simple ar-
chitecture that combines Sentence-BERT em-
beddings with a Graph Attention Network, al-
lowing us to isolate and highlight the effects of
linguistic nuance. This design effectively cap-
tures the contribution of tone and event con-
text; however, its simplicity may constrain the
model s expressive capacity and ultimate per-
formance ceiling. Consequently, the full poten-
tial of nuanced language understanding within
state-of-the-art fact-verification architectures,
which incorporate richer contextual modeling
or explicit propagation dynamics, remains an
open area for further exploration.

Recent fact-verification models use dense
passage retrieval (Thorne et al., 2018), fine-
tuned transformers trained on large-scale veri-
fication datasets (Schuster et al., 2019), or het-
erogeneous graphs that capture social propaga-
tion patterns (Hu et al., 2025b). Such architec-
tures may already capture hedging and tonal
variation through large-scale pre-training or
by integrating evidence from multiple sources.
However, it remains uncertain whether these
implicit signals achieve the same interpretive
precision as explicit nuance modeling. In
other words, while advanced models may rec-
ognize linguistic uncertainty to some extent,
they may not yet distinguish how specific tone
markers influence veracity judgments.

Future work could therefore explore inte-
grating the ECE and NCM modules into more
advanced architectures would yield diminish-
ing returns or, conversely, reveal complemen-
tary effects—and how stronger baselines might
interact with nuance-aware modelling to either
enhance or reduce their overall impact.
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