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摘要 

本研究針對 FSR 2025 客語辨識任務，

比較大型預訓練模型微調與從頭訓練

兩種策略。漢字辨識部分，透過微調

五種不同規模的 Whisper 模型，large-

v3-turbo 在測試集達到 7.55% CER。拼

音辨識部分，則比較 Branchformer與採

用 LoRA微調的Whisper-small，兩者在

測試集的 WER 分別為 4.7%與 6.5%。

在資料前處理方面主要採用速度擾動

進行資料增強。 

Abstract 

This study addresses the FSR 2025 Hakka 

speech recognition task by comparing two 

strategies: fine-tuning large pre-trained 

models and training from scratch. For 

character (Hanzi) recognition, we fine-

tuned five different scales of the Whisper 

model, with large-v3-turbo achieving a 

7.55% CER on the test set. For Pinyin 

recognition, a Branchformer model was 

compared against a LoRA fine-tuned 

Whisper-small, yielding WERs of 4.7% 

and 6.5% on the test set, respectively. 

Speed perturbation was the primary 

method used for data augmentation in our 

pre-processing pipeline. 

關鍵字：客語、ASR、Whisper、Branchformer 
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1 Introduction 

自動語音辨識(ASR)技術近年來因深度學習模

型的突破而快速發展，端到端(End-to-End, 

E2E)模型與大型預訓練語音模型已成為主流。

Formosa Speech Recognition Challenge (FSR)的

主要任務是客語語音辨識，對於瀕危語言的

保存具有重要意義。 

回顧 2023 年的 FSR，比賽團隊針對客語

ASR採用了多種方法。在模型架構上，E2E模

型(如 Conformer、Branchformer、Zipformer 

transducer 及 Hybrid CTC/Attention)被廣泛應用，

以捕捉語音的時序與長距離依賴(Chang and 

Chen, 2023; Lu et al., 2023a; Su et al., 2023)。

Whisper 與 WavLM 等大型預訓練模型也被廣

泛使用(Lu et al., 2023a; Chiang et al., 2023; 

Huang and Tsai, 2023)，透過少量客語資料結合

參數高效微調(PEFT，如 LoRA、AdaLoRA)，

可達到良好的辨識效果。同時 Wav2vec2.0 與

HuBERT 等自監督學習(SSL)模型常用作前端

特徵提取器，從未標記語音中學習表示(Hu 

and Chen, 2023; Yang et al., 2023)。 

為解決資料稀缺與雜訊問題，多型態訓練

(MTR)、頻譜擴增(SpecAugment)、速度擾動

(Speed Perturbation)等資料擴增技術被廣泛使

用，以提升模型穩健性(Chang and Chen, 2023; 

Yang et al., 2023; Lu et al., 2023b)。部分系統結

合淺層融合(Shallow Fusion)、N-best Rescoring

等後處理方法，利用額外文本語料改善辨識

結果，也有研究採用基於 BERT 的 pBERT 重

新計分(Lu et al., 2023a; Yang et al., 2023)以及使

用語音活性檢測(Voice Activity Detection, VAD)

則用於去除靜音片段，提升辨識效率(Chen et 

al., 2023)。 

儘管過往的比賽已經取得多方面進展，但

仍存在挑戰，例如如何進一步提升模型的多

樣性、縮小訓練與測試資料之間的差異，以

及處理客語羅馬拼音與漢字轉換的問題。今

年的比賽中，我們將延續過往的經驗與成果，

探索更適合客語語音辨識的解決方案。 

Whisper微調與 Branchformer於客語語音辨識之應用 

Applying Whisper Fine-tuning and Branchformer to Hakka Speech Recognition 
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2 Methods 

2.1 ESPnet 

ESPnet(End-to-EndSpeechProcessingToolkit)，

是一個開源、端到端的語音處理工具包，主

要基於 PyTorch深度學習框架進行開發，並延

續 Kaldi 風格的資料處理流程。而後來推出的

ESPnet2採用 YAML設定 + recipe的模組化設

計，易於重現實驗與切換架構。ESPnet2 的核

心優勢之一是其模型庫的豐富性與靈活性，

使用者可以在設定檔中輕鬆切換和配置不同

的後端模型架構，例如：Transformer、

Conformer、或是基於 RNN 的經典模型等。

ESPnet2 針對不同的應用任務提供了不同方法，

例如：自動語音辨識(ASR)、文字轉語音

(TTS)、語音增強/分離(SE/SS)、語音翻譯(ST)

與口語理解(SLU)等主流領域。除了內建的核

心模型，ESPnet 的框架還支援最新的大型預

訓練模型(如Whisper)進行整合與支援LoRA微

調。 

2.2 Whisper 

Whisper是由OpenAI所開發的一套開源自動語

音辨識(ASR)系統(Radford et al., 2022)，該系統

經過 680,000 小時的訓練，使用多語言及多任

務的監督式資料，提升系統在口音、背景噪

音及技術性語言上的穩定性。且支援多國語

言的語言辨識。 

Whisper 模型屬於典型的 Transformer 架構 

(Vaswani et al., 2023)，採用 Encoder-Decoder的

Attention機制。模型前端包含兩層一維卷積層

(濾波器大小為 3，啟用函數為 GELU)，第二

層卷積的步長為 2，用於對輸入的梅爾頻譜特

徵進行下採樣。輸入音訊會重採樣至 16kHz，

並計算 80維 log-magnitude Mel spectrogram，

視窗大小 25毫秒、步長 10毫秒。處理後的數

值正規化至[-1, 1]，並近似零均值。以 30秒音

訊片段為例，可得到 3000×80的特徵矩陣，經

兩層卷積後縮減為 1500×80。卷積輸出再加入

位置編碼，其中編碼器使用 sinusoidal 

positional embedding，解碼器則使用 learned 

positional embedding。Transformer 區塊採用 

pre-activation residual blocks(Child et al., 2019)，

並於編碼器輸出端施加最終層正規化。解碼

器則使用 tied input-output embeddings(Press and 

Wolf, 2017)。 

標記器部分採用基於 GPT-2 的 Byte-Pair 

Encoding (BPE)， 包 括 tiny、base、small、

medium 與 large，其中 large 分為 large-v1、

large-v2和 large-v3，且 large-v3的整體表現最

佳。針對不同語言，英文部分會直接沿用

GPT-2BPE，其餘語言的模型將重新擬合詞彙

分布，但保持詞表大小不變，以避免非英文

語言的過度斷詞。Whisper 的不同模型版本依

層數與參數量劃分：最小的 tiny模型包含 4層

encoder與 4層 decoder，參數量為 39M；最大

的 large模型包含 32層 encoder與 32層 decoder，

參數量為 1550M。除了直接使用官方釋出的

模型外，亦常透過微調(fine-tuning)的方式，

針對特定領域或語言進行再訓練，以進一步

提升模型在專業場景中的辨識效能與適應性。 

3 Experiments 

3.1 資料集 

我 們 使 用 Formosa Speech Recognition 

Challenge 2025 - Hakka ASR II 競賽官方提供的

訓練資 料 集 FSR-2025-Hakka-train，以及熱身

賽資料集 FSR-2025-Hakka-evaluation為音檔資

料 集 與 熱 身 賽 資 料 集 FSR-2025-Hakka-

evaluation-key 為熱身賽資料集的標準答案。

而資料集分割的部分我們將訓練資料集隨機

打亂後依照 8:1:1 的比例各切成 train、dev、

test 三份。訓練資料集的切分(見表 1)。 

資料集切分 句數 時長(hours) 

train 21879 49.64 

dev 2735 6.17 

test 2735 6.19 

表 1. 訓練資料集切分比例 

整理熱身賽資料集時，我們發現兩者以話

語 ID 對齊後，FSR-2025-Hakka-evaluation 比

evaluation-key 多出 105筆音檔而無答案。因此

僅在 FSR-2025-Hakka-evaluation 與 FSR-2025-

Hakka-evaluation-key的交集 4,299筆上計算，

熱身賽資料集的配置(見表 2)。 

 句數 

FSR-2025-Hakka-evaluation-key 4299 

FSR-2025-Hakka-evaluation 4404 

表 2. 熱身賽資料集的配置 
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3.2 評估方式 

模型評估採用字元錯誤率(Character Error 

Rate, CER)、詞錯誤率(Word Error Rate, WER)

與句子錯誤率(Sentence Error Rate, SER)。CER

表示語音轉寫內容在字元層級的準確性，能

夠反映模型對於每個字的辨識效果，用於衡

量模型在實際應用上的轉寫精確度。WER 則

為詞錯誤率(Word Error Rate, WER)，以詞為單

位，計算預測結果相較於正確答案所發生的

替代、刪除與插入錯誤總數來衡量轉寫的準

確性。而 SER 是計算模型整句預測是否與正

解完全一致，若句子中有任一字元錯誤則判

為錯誤，為更嚴格的指標，評估在完整語句

層級的表現。 

3.3 客語漢字 

本節比較 Whisper系列多個規模的模型在客語

語音辨識任務中的微調表現，所使用之模型

包含 tiny、base、small、medium 與 large-v3-

turbo。 

模型訓練使用 HuggingFace Transformers 與

PyTorch 架構實作，並整合 Whisper 提供之

WhisperProcessor，進行特徵擷取、分詞與標

註等前處理工作。主要訓練參數設定如下：

音訊採樣率為16kHz，最大音訊長度限制為30

秒，文字最大生成長度為128。訓練採用 mini-

batch大小 16，並進行 4次梯度累積以模擬較

大批次；學習率設定為 1e-5，總訓練週期為

10epochs。在模型選擇上，以驗證集 CER 分

數最低之 checkpoint作為最佳模型並保存。 

3.4 客語漢字實驗結果 

使用 Whisper 不同規模的模型進行客語漢字辨

識實驗，以下整理各模型在測試集上的漢字

辨識結果(見表 3) 

Dataset Model CER SER 

測試集 

tiny 28.37 82.78 

base 15.28 67.71 

small 11.89 57.26 

medium 39.41 56.86 

large-v3-

turbo 
7.55 33.81 

表 3. 各模型在測試集中的漢語辨識結果 

從測試集的結果可觀察到，隨著模型規模

增大，CER整體呈現下降趨勢，其中 large-v3-

turbo在測試集上取得最佳表現，CER為7.55%， 

SER 也降至 33.81%，顯示其對客語漢字辨識

具有較佳能力。 

在比賽提供的熱身賽資料集上的漢字辨識

表現結果(見表 4)。 

Dataset Model CER SER 

熱身賽資

料集 

tiny 33.18 84.28 

base 25.76 73.71 

small 22.27 65.22 

medium 13.61 49.85 

large-v3-

turbo 
22.78 66.18 

表 4. 各模型在熱身賽資料集中的漢語辨識結果 

在比賽提供的熱身賽資料集中，表現最佳

的反而是 medium模型，其 CER為 13.61%，

SER為 49.85%；而 large-v3-turbo在該資料集

的 CER為 22.78%，表現不如預期。 

根據比賽官方網站熱身賽的說明，baseline

採用的模型為 large-v3-turbo。儘管本研究針對

該模型進行微調，但在熱身賽資料集上的

CER表現仍未能超越 baseline的 10.42%，顯示

模型在特定資料上辨識能力仍有提升的空間。 

造成 CER 上升的可能因素包括語者差異、

背景噪音干擾、語速變化及資料分布不均等

問題。 

3.5 客語拼音 

本研究在客語拼音部分比較兩種基於

ESPnet 所實現模型，分別為從頭訓練的

Branchformer(CTC/Attention)混合訓練，以及

對大型預訓練模型 Whisper進行參數高效微調。

兩 種 方 法 皆 採 用 了 速 度 擾 動 (Speed 

Perturbation)作為共通的資料增強手段，將訓

練語音以 0.9、1.0及 1.1三種不同語速進行資

料增強。 

首先我們嘗試的方法為 Branchformer 

(CTC/Attention)混合訓練，模型前端將原始音

訊轉換為 FBANK聲學特徵，並在頻譜圖上應

用 SpecAugment進行進一步的資料增強。模型

的核心架構由一個包含 12 個區塊的

Branchformer 編碼器與一個包含 6 個區塊的

Transformer 解碼器所組成。訓練過程中，採

用混合式 CTC/Attention的訓練方法，將 CTC

損失與注意力導向的交叉熵損失進行加權，

並使用標籤平滑作為正規化手段。優化器選

用 Adam，搭配 WarmupLR學習率。在解碼階
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段，系統使用寬度為 20 的波束搜尋，並將

CTC 分數與解碼器分數進行聯合解碼。為了

進一步提升辨識準確率，額外訓練並使用一

個基於 4層 Transformer的 BPE-300子詞級語

言模型。該語言模型在解碼階段透過二次評

分的方式被整合進系統，其權重被設定為 1.0，

以優化最終輸出的語法與流暢度。 

第二種方法採用參數高效微調(PEFT)策略。

與方法一不同，在前端直接以原始音訊波形

作為輸入。模型的核心是使用 OpenAI 的預訓

練模型Whisper small版本作為基礎編碼器與解

碼器。為了更好的輸出效果，我們採用了

LoRA(Low-Rank Adaptation)技術進行微調。凍

結Whisper模型的原始權重，僅在 Transformer

注意力機制的 query, key, value層中注入可訓練

的低秩矩陣。模型的訓練目標僅為注意力導

向交叉熵損失。在解碼階段，系統採用寬度

為 10 的波束搜尋。 

3.6 客語拼音實驗結果 

漢字拼音部分，我們嘗試三種模型組合作為

比較，以下整理各方法在測試集上的漢字拼

音辨識結果(見表 5)  

Dataset Model WER SER 

測試集 

BRF 4.9 38.5 

BRF+ LM 4.7 38.7 

WSP_SM 

+ LoRA 

6.5 37.4 

表 5. 各方法在測試集中的拼音辨識結果 

其中 Branchformer(BRF, CTC/Attention)方法

的表現為WER 4.9%、SER 38.5%；在 BRF上

加入 Transformer的 BPE-300子詞級語言模型

進行二次重評分(BRF+LM)後，WER 下降至 

4.7%，但 SER 略升至 38.7%，顯示 LM 有助於

WER 修正，對整句完全正確的比例未必同步

提 升 。Whisper small 採 用 LoRA 微 調

(WSP_SM+LoRA)其表現 WER為 6.5%，高於

BRF系列，但 SER為 37.4%，為三者最佳，反

映其較強的語言模型能提高句子完整度。 

接著為各方法在比賽提供的熱身賽資料集

上的辨識拼音辨識表現結果(見表 6)。 

Dataset Model WER SER 

熱身賽資

料集 

baseline  23.4 

BRF 30.3 71.7 

BRF+ LM 54.4 99.0 

WSP_SM 35.0 58.6 

+ LoRA 

表 6. 各方法在熱身賽資料集中的拼音辨識結果 

在熱身賽資料集中，官方 baseline表現最佳，

SER 為 23.4。而 BRF 模型訓練後，WER 為

30.3、SER 71.7，整體落後 baseline。進一步加

入外部語言模型(BRF + LM)後，WER 升至

54.4、SER幾近 99.0，我們認為可能是 LM 權

重設定過高所致，導致解碼分數被 LM主導而

產生錯誤預測。相較之下，採用Whisper small 

+ LoRA 的參數高效微調，WER 35.0、SER 

58.6，雖未優於 baseline，但 SER 顯著低於

BRF的 71.7，顯示大型預訓練模型的穩定度較

佳。 

4 Conclusion 

本研究在漢字辨識部分，我們微調不同規模

Whisper 模型。在自行切分的測試集中，large-

v3-turbo 模型憑著模型參數規模的優勢，取得

7.55%的最佳字元錯誤率(CER)。在拼音辨識

部分，我們比較 Branchformer 模型與基於

Whisper small進行 LoRA微調的模型。實驗結

果顯示 Branchformer(CTC/Attention)在測試集

上的詞錯誤率(WER)為 4.9%，加入外部語言

模型後進一步下降至 4.7%；相較之下，

Whisper small + LoRA的WER為 6.5%，雖然

略高於 Branchformer，但在句子錯誤率(SER)

上則達到 37.4%，比 Branchformer的 38.5%還

低，其在句子完整度上更具優勢。 

在未來研究我們認為可朝以下方向進行改

善：加入背景噪音處理機制，提升模型在實

際環境音下的辨識穩定性；可引入資料增強

技術，如聲音混合、頻譜遮蔽(SpecAugment)

等，提升模型對聲音變異的適應能力。也可

針對腔調進行分流訓練或採用語者標註進行

語者自適應，提升在不同腔調與跨語者場景

下的表現一致性。透過上述策略，有望提升

模型泛化能力，提高模型在真實應用場景中

的實用性與準確率。 
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