Optimizing Whisper Parameters and Training Data Processing
for Formosa Speech Recognition Challenge 2025 - Hakka ASR II
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Abstract

This paper presents the development and
experimental process of our system for
the Formosa Speech Recognition Challenge
2025 (Hakka ASR). The proposed system
is built upon the OpenAI Whisper model.
We achieved significant performance im-
provements for the Sixian dialect of Hakka
through dataset preprocessing and model
fine-tuning. In the warm-up evaluation,
our system achieved a Character FError
Rate (CER) of 10.51% on the character
recognition track and a Syllable Error Rate
(SER) of 14.72% on the pinyin recognition
track. In the final evaluation, our system
achieved a Character Error Rate (CER) of
11.21% on the character recognition track
and a Syllable Error Rate (SER) of 15.08%
on the pinyin recognition track.
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1 Introduction
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H£# % end-to-end A FF » MLF LKL
KA M B3R 2 OpenAl AT # % 69 Whisper-
ASR (1) £ A&MBER ERER 5 THIR
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HEARAL 5 b e sb AR b AT ST R IEIEAT B
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1.3 Formosa Speech Recognition
Challenge 2025
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2 Methodology

2.1 Dataset
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Table 1: 4k A £ 43 (Statistics of the Train-
ing Dataset)

Data Source Duration (hrs) Utterances

Train Set 62.02 27,349
Warm-up (Speech) 8.01 3,458
Warm-up (Media) 2.22 946
Total 72.25 31,753

2.2 Evaluation Metric

HAEPEERE - WA FAHERE (Charac-
ter Error Rate) $ & #i543& & (Syllable Error
Rate) > A A X% T :
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N
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ErrorRate =

2.3 Fine-tuning Whisper
8% Whisper B £ 5 #8355 L AL E -
{2374 &35 F 4 AR T RES SRR L%
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KAMEA A (Fine-tuning) R% » f£ KM
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2.4 Data Augmentation

BT REENEARTRERGBIESHH
PR EGZACGES  RMIEET SHETH
¥ 7% (Data Augmentation) A7 » EHEE
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2.4.1 SpecAugment

SpecAugment (2) & —7#E /£ B A% (Spectro-
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2.4.2 Audio Concatenation
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2.4.3 Speed Perturbation
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2.4.4 Noise Injection
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2.5 LoRA
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2.6 Denoising as Preprocessing
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3 Experiments

3.1 Experimental Setup

ARG AE TR T RME A
whisper-medium /£ & A& # 4 A (base model) »
i # NVIDIA V100 GPU LE#EATI4R - &
BEAR PG g B M s BT A A 8 31 s A
(epoch) 3 ‘E B 5 K> R K (batch
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size) B 4° %% % (learning rate) 2| E T
B 5x107° e

EAVE R IR EH RLEET EMF M
BAAARASEEEHM - BT IRERR A
MGG FEHFA 60% £ 40% # bl it
T4 > F 40% 8930 91 B &M e R K -
F’Tﬁﬁ‘%%%ﬁﬁﬁb/ﬂ' K LEATIRAE - B
F LR R (Character Error Rate, CER) $2
+ #p 453 & (Syllable Error Rate, SER) 1§ 5
FRIGAR o

3.2 Effectiveness of Data

Augmentation
BTRETRAHEBEMABAGTE > &K
33T — A7 894 E B o

3.2.1 SpecAugment

B RMFFET SpecAugment 893CR o T
B KM HE—FMATH A 50% 8K
& SpecAugment * £ B HE E (Time
Masking) # 5% % % 30 # FEZE (Fre-
quency Masking) 89 5##% & 15 & 2K
& 3 P 0 {£m A SpecAugment #LIEAEA 89
SER # 9.51% % £ 9.04% A& CER # 3.58%
M E 3.45% o B LBl AL A AR AHAR R Y
ZALRE T o

Table 2: SpecAugment ¥ 5 # R L (¥ F)

Configuration SER (%)
Baseline (Original Data) 9.51
+ SpecAugment 9.04

Table 3: SpecAugment ¥ 524 R L (& F)

Configuration CER (%)
Baseline (Original Data) 3.58
+ SpecAugment 3.45

3.2.2 Other Augmentation Techniques
FT A » &M1& SpecAugment 89 &8 b > i
—F B L ZAEE 36 7k EEHE (Au-
dio Concatenation) ~ #&3i& X% (Speed Pertur-
bation) $2%&-&F A (Noise Injection) °
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o EHRAKY: HFE BB 1142
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FRERw R AREKRL T o RIMBER - &
THEREBRT ZAEZCE 4 SER 2 CER
SR E—FEIKE 8.96% & 2.93% ° A J
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Table 4: % EHE BB T RER (HFF)

Configuration SER (%)
+ SpecAugment (Baseline) 9.04
+ SpecAugment + Audio Concatenation 8.96

+ SpecAugment + Speed Perturbation (1.1x) 9.61
+ SpecAugment + Noise Injection 9.06

Table 5: %8 FHE B EMERER (£5)
Configuration CER (%)
+ SpecAugment (Baseline) 3.45

+ SpecAugment + Audio Concatenation 2.93
+ SpecAugment + Speed Perturbation (1.1x) 3.18
+ SpecAugment + Noise Injection 3.12

3.3 Comparison of Base Models and
LoRA
KME—-F BT AR RTH Whis
per A > R £ KRAER L JE A LoRA
WAL E ABRRT RS
A3 & ¢ (i) £ M whisper-large-v2 2
whisper-large-v3-turbo AT H A ; (ii) 4
whisper-medium i whisper-large-v3 E#&
Al LoRA AT 5 # 3 2 M o B hmik T hrik
Koo BT A BRI E314 3 18 epoch » &AEA 8
LoRA %% (alpha, rank) %= & 6 AT ©
FTRERHE T large-v2 EEZAHE
L%i%ﬁ&(%R:&m%>’ﬁﬁ%
large-v3-turbo (SER = 9.95%) %A &3k o
Ko 1'%1;5\ LORA R e AE A (medlum §5’-
large—v3) BeAm BB X AR MR BT
% LoRA f x%%%&&%z9ﬁﬁ$ﬁ
%%%J’_’%%EVXE@J A8 R &y RAER -

Table 6: TR AR E LoRA TRER (#H)

Model / Method Alpha Rank (r) SER (%)
whisper-large-v3-turbo - - 9.95
whisper-large-v2 8.78
whisper-medium (LoRA) 128 256 22.24
whisper-large-v3 (LoRA) 128 256 21.80
BAVA LRI A RS La E R A0 E 0 RN

R ZAR A A whisper- medium B At i
{£4% Al SpecAugment 1F B & 4138 % Rk 69 4L
A s R e A M TR R A e SR
P EET] o
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4 Conclusion

LB A vk Whisper-ASR & st » st &%
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Table 7: % B4

Type Character Pinyin
CER(%) 10.51 X
SER(%) X 14.72

EEEFFLERR (BE4)

101.63%

80% 75.58%

T CER

37.64% 36.68%

31.93%
30%
20% 16.06%7:92% |88 15.90% 23
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- I I I 8 1 [ l
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10%
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Table 8: i &4k

Type Character Pinyin
CER(%) 11.21 X
SER(%) X 15.08
SER(F ) (%) X 11.32
EERTFUHARE (BEMA)
100.00%
100%
90%
80%
70%
[-3
Y e
B
a0%
o 30.40% 26.43% 28.70%
i i 17.13%
:: n 21%7 e I 15.73% 3 355 I ui% I 15 51%g gg%
~Alm
c our
St
ERENEEEHHRE (BEA)
100100%00%
100%
90%
80%
70%
S gox
;I 50% 47.95%
K a0%
27 5% 30 55%
30% 25.04% I e
20% 15. uz%}u az% 14 21% 35% 433‘
10% I
0%
l@.ﬁﬁ%ﬁ

uHEWER mHEERAWER

A A B ® T Whisper #7A R FEE
89 T SR %kﬁbﬁﬁ%&uﬁg‘ iﬂi"-TT
*%,*xqu%@ %XﬁF%Tﬁéé%
o RSRART 82 R & AE T R > A
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