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摘要

本研究參與 2025 客語語音辨識競賽的拼
音軌及漢字軌，針對大埔腔與詔安腔兩
個低資源腔調，設計並比較不同的語音辨
識系統。我們的核心策略是透過跨語言遷
移學習 (Transfer Learning)，有效利用相
近語系的資源，並結合自監督學習 (Self-
Supervised Learning, SSL) 以提升模型在
拼音軌的辨識效能。在漢字軌方面，則使
用 Whisper 模型並搭配 LoRA (Low-Rank
Adaptation) 進行微調。為了緩減語料不
足的限制，我們採用兩種資料擴充方法：
模擬對話式語音以處理多語者情境，以
及利用文字轉語音 (Text-to-Speech, TTS)
生成額外的詔安腔語料。在熱身賽的結
果顯示，遷移學習在拼音軌表現尤為顯
著，使系統於所有隊伍中取得平均字錯誤
率 (Character Error Rate, CER) 19.57%，
排名第三；在漢字軌中，Whisper 結合
LoRA 系統則達到平均 CER 6.84%，並
獲得社會組第一名。本研究證明遷移學習
與資料擴充能有效提升低資源語言的辨
識表現，但在媒體語料的領域落差下仍存
在挑戰，未來將探索語境學習 (In-Context
Learning, ICL)與熱詞建模 (Hotword Mod-
eling) 以改善此問題。

Abstract
This study presents our system for Hakka
Speech Recognition Challenge 2025. We
designed and compared different systems
for two low-resource dialects: Dapu and
Zhaoan. On the Pinyin track, we gain
boosts by leveraging cross-lingual transfer-
learning from related languages and com-
bining with self-supervised learning (SSL).
For the Hanzi track, we employ pre-
trained Whisper with Low-Rank Adapta-
tion (LoRA) fine-tuning. To alleviate the
low-resource issue, two data augmentation
methods are experimented with: simulat-
ing conversational speech to handle multi-
speaker scenarios, and generating addi-
tional corpus via text-to-speech (TTS). Re-

sults from the pilot test showed that trans-
fer learning significantly improved perfor-
mance in the Pinyin track, achieving an av-
erage character error rate (CER) of 19.57%,
ranking third among all teams. While in
the Hanzi track, the Whisper + LoRA sys-
tem achieved an average CER of 6.84%,
earning first place among all. This study
demonstrates that transfer learning and
data augmentation can effectively improve
recognition performance for low-resource
languages. However, the domain mismatch
seen in the media test set remains a chal-
lenge. We plan to explore in-context learn-
ing (ICL) and hotword modeling in the fu-
ture to better address this issue.
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1 簡介

儘管語音辨識的研究於主流語種進展快速，欲
解決的研究問題已從通用場景延伸至不同的小
眾市場，但針對資源匱乏的弱勢語言，如何善
加發揮仍然是一項具挑戰性的題目。
此次 2025 客語語音辨認競賽聚焦在兩個弱
勢腔調：大埔腔、詔安腔。認知到這兩個腔調
語料有限，欲達到較佳的辨識結果勢必會需要
額外的語料參與，儘管腔調上有所不同，同屬
客語語系的相似腔調語料在模式上還是會有所
幫助 (Qian et al., 2024)。因此我們的做法分
為兩部分：最大化既有語料的表現，以及擴增
目標語言的資料。
在低資源語言的研究領域中，使用預訓練模
型是熱門且相對簡單的手段，如何能夠在有
限資源中有效的學習也是此領域的一大重點
(Piñeiro-Martín et al., 2024)。方法上可以是：

• 尋找類似語系，經大規模語料訓練過的先
進模型，對其解碼器進行遷移訓練
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• 使用自監督模型如 wav2vec, WavLM 或
HuBERT 並訓練其進行下游的語音辨識
任務 (Zhao and Zhang, 2022)

• 基於語音辨識基礎模型如 Whisper (Rad-
ford et al., 2023)，因其訓練所用的語料
以及任務設定，使得 Whisper 能夠快速
地適應不同的語料標記，並達到足夠強健
的辨識結果這些方法讓稀少資源的語料也
能善用既有的優異語音特徵，從有限的標
記中達到較理想的辨識效果。

另外我們觀察到在測試語料中的媒體語料子
集具有比較複雜的語音環境，如對話、噪音、
遠場等性質，以及可能測試語料與訓練語料的
領域差異導致表現不佳，我們參考過往研究與
比賽經驗，合成相似性質的語料進行訓練，以
改善辨識結果。

2 策略與方法

2.1 K2 與 SSL
K2 為 Kaldi (Povey et al., 2011) 作者所建立
團隊進行開發的語音處理框架，具辨識效果良
好、易操作、運算快速、節省資源等優勢，並
且在中文語系的常見語料都有預訓練模型可供
快速實驗；另外在自監督模型上，也有對應的
研究 (Yang et al., 2024)能夠套用如 wav2vec、
HuBERT 等模型，進行下游任務的訓練，故
在漢字賽軌，我們會先已 HuBERT + RNN-T
的方式訓練，將資料集擴增的策略在此模型上
做初步的嘗試。
在拼音賽軌，由於 Whisper 最相近於客語
的語系為中文，但解碼器在該語系已經被訓練
至對漢字比較拿手，微調其輸出拼音，又或是
重置解碼器都是相對次優的做法，所以拼音我
們會使用 K2 zipformer 於 WenetSpeech 預訓
練的模型，重置其解碼器使其輸出拼音。

2.2 Whisper
Whipser 為 OpenAI 所發表的語音辨識基礎
模型，使用常見的 Transformer 架構，訓練在
68 萬小時自網路蒐集、多數來自 Youtube 影
片的多語言語料，訓練任務為轉錄與轉譯（至
英文）。由於語料的多樣性，Whisper 對於常
見的環境變異都有良好的強健性，欲微調相似
語系時也只需較少的語料就能有所改善，至今
仍是熱門的語音辨識模型。
然而此模型若想要在中文上有可靠的辨識
能力（準確度高於八成），至少得選用參數
量 small 以上的模型，而訓練更大的模型卻
伴隨著更長的訓練時間，不利於比賽的實驗
迭代，故我們會先在 K2 探索適合的語料設

Corpus Spks. Sents. hrs.
Train
Dapu 64 12197 31.43
Zhaoan 59 15152 30.59
Eval (Pilot test)
Studio - Dapu 10 1304 4.01
Studio - Zhaoan 11 2154 4.00
Media - Dapu - 445 1.08
Media - Zhaoan - 501 1.13
HakkaCouncil
Reading - Sixian 208 - 396
Reading - Hailu 151 - 300
TTS - Zhaoan
OOV 9 682 9.65
E-Learning 9 124588 136

Table 1: 比賽的訓練與測試語料，與 TTS 語料的
統計資訊

Unique
Words Train Eval (OOV)

Studio Media
dapu 5771 2323 (230) 1552 (483)
zhaoan 4911 2221 (57) 1317 (275)

Table 2: 訓練與測試語料的詞目統計，括號中為遺
失字數量

定，再套用至強健性較佳的 Whisper，並使用
AdaLoRA (Zhang et al., 2023) 技術降低訓練
的運算成本。

2.3 資料擴增

在 K2 的初步實驗中，我們發現儘管對於錄
音室測試語料的漢字辨識能力已能達到九成
以上的正確率，在媒體測試語料上卻不到三
成；同樣的情況也發生在 Whisper 的結果上，
尤其是紹安腔的部分，與大埔腔的字錯誤率
差了大約 2.5 倍。我們進一步分析發現，媒
體語料相較於錄音室語料會有較多的遺失字
(Out-of-Vocabulary, OOV)，在紹安腔所以我
們使用近期常見於稀少資源語料的擴增做法：
透過 TTS 合成額外語料 (Chen et al., 2023)，
來試圖提高在媒體語料上的表現。在這裡我們
使用 FormoSpeech 團隊的 TTS 模型 yourtts-
htia-2407041 進行語料的生成。
另外，由於媒體語料的組成大多為對話式的
語音，若只用朗讀型的語料訓練，模型在遇到
語者的語音重疊或是被打斷時，辨識結果會產
生明顯衰退，所以我們在 K2 的訓練額外合成
了對話式的語料，以提高媒體語料的辨識率。

1https://huggingface.co/formospeech/yourtts-htia-
240704
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Exps. (CER%) Studio Media Total Avg.Dapu Zhaoan Avg. Dapu Zhaoan Avg.
Train 6.78 6.46 6.62 73.98 80.01 77.00 41.81

+ft speed&reverb 6.15 5.64 5.90 68.48 77.77 73.13 39.51
Train&Conversation 6.12 5.25 5.69 63.71 74.92 69.32 37.50
Train&Conversation (TTS) 3.80 3.52 3.66 62.34 57.37 59.86 31.76

Table 3: 漢字軌於 k2 框架進行的實驗結果

Exps. (CER%) Studio Media Total Avg.Dapu Zhaoan Avg. Dapu Zhaoan Avg.
FormoSpeech/hakka 9.47 29.95 19.71 14.56 41.19 27.88 23.79

+ft Train 1.11 2.22 1.67 8.71 21.13 14.92 8.29(6.84)
+ft Train & OOV (TTS) 1.13 3.26 2.20 7.85 21.11 14.48 8.34

Table 4: 漢字軌於 Whisper 的實驗結果，總平均欄位的括號為官方所回報之結果

3 實驗設定

3.1 資料集

除了決賽的結果會加入熱身賽的測試語料進行
訓練外，其他實驗的訓練語料皆不包含測試語
料。這些語料的統計資料如表 1。

TTS 語料進一步分成兩種，我們先使用客
語能力認證的文字語料進行一般性用詞的語
音生成，但發現只用這個領域的文字語料並不
足以改善媒體測試語料的辨識率，我們便仔細
檢視媒體語料的標記，並與客家詔安腔字典進
行比較，如表 2，鎖定分詞結果不在訓練語料
的句子進行合成。雖然就統計上來看大埔腔在
OOV 的字詞比例較多，但由於詔安腔的表現
較差，故我們優先以詔安腔進行語料的合成。

3.2 硬體與參數

在本次的大部分實驗中，我們採用兩款不
同型號的 GPU 進行運算，分別為 NVIDIA
GeForce RTX 3090 與 4090。不論是在 k2 框
架下或是使用 Whisper，所需時間均大約為
18 至 24 小時。在 k2SSL 的實驗上我們參
考原始論文的訓練參數，訓練最多 200 週期
(epoch)，再挑選收斂的區間進行權重平均後，
使用貪婪搜尋法 (Greedy Search) 進行解碼。
對於 Whisper 的類型挑選，我們站在巨
人的肩膀上，使用 FormoSpeech 團隊所公開
的 whisper-large-v3-taiwanese-hakka2 模型作
為基底，此模型使用台灣最常見的六種客語
腔調進行微調訓練，直接對這次比賽的測試語
料辨識就已經具有不錯的表現，我們即固定使
用這個模型做為基準，進一步使用這次比賽語
料進行微調，另外也參考了先前比賽的報告，

2https://huggingface.co/formospeech/whisper-
large-v3-taiwanese-hakka

加入資料擾動如：速度、音高變動與空氣吸收
(AirAbsorption) 以適應測試語料媒體子集的
聲學環境，最多訓練 10 個週期。推論則挑選
驗證集損失最低的單一檢查點，大部分收斂落
在 3∼5 週期左右。

4 實驗結果

4.1 漢字軌

4.1.1 K2SSL 實驗
初步實驗我們採用K2SSL研究中的 zipformer-
based HuBERT 模型 (由 HuBERT-base-ls960
衍生)作為編碼器訓練 RNN-T系統進行辨識，
如表 3，僅使用比賽訓練資料的話，雖然能在
錄音室語料上達到接近九成五的辨識率，但在
會議語料上卻僅有兩成左右，即使進一步增加
資料的擾動，改善的程度也有限。
觀察媒體語料的組成後，我們將訓練語料加
上擾動，產生模擬對話情境的語料再次訓練。
模擬對話情境相較僅使用朗讀風格的訓練語料
有更為明顯的改善，但在媒體語料的部分，詔
安腔的表現則明顯弱於大埔腔。故我們蒐集詔
安腔能力測驗的文字語料，使用 TTS 產生詔
安腔的合成語料後，再次模擬對話情境進行訓
練，在詔安腔媒體語料降低了 17% 的字錯誤
率，並也一併改善了錄音室語料的辨識率。
然而媒體語料的整體辨識率仍不及五成，我
們推測由於 HuBERT-base 因僅訓練在 Lib-
rispeech 的朗讀語料，仍不具有足夠的強健性
處理複雜的聲學情境，因此接下來我們會使用
Whisper 進行。

4.1.2 Whisper
實驗結果如表4，我們將 FormoSpeech 團隊所
微調的模型作為基準值，使用其直接對測試
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Exps. (CER%) Studio Media Total Avg.Dapu Zhaoan Avg. Dapu Zhaoan Avg.
Zipformer-HuBERT 4.55 19.15 11.85 35.50 59.34 47.42 29.64
Wenet-Zipformer
+ft ’23, ’25 train 5.77 10.78 8.69 20.20 40.29 31.37 17.17

Wenet-Zipformer
+ft 客委會->’23, ’25 train 5.46 10.36 8.31 21.07 38.75 30.90 16.76

Whisper +ft Train 8.32 17.24 12.78 26.56 31.52 29.04 20.91(19.60)

Table 5: 拼音軌的實驗結果，總平均欄 (Total Avg.) 的括號內數字為官方所回報之結果

語料進行辨識，在大埔腔的錄音室與媒體語料
均有接近九成的辨識率，得益於 Whisper 對
複雜聲學環境的強健性，詔安腔則相對較為弱
勢，所以在 Whisper 的實驗上我們仍然是聚
焦在改善詔安腔的辨識結果。

使用比賽的訓練語料進行微調後，在錄音室
語料上就有大幅度的改善，兩個腔調的平均字
錯誤率從 19.71% 下降至 1.67%，推測是基底
模型在訓練時詔安腔語料不足的關係；媒體語
料也從平均 27.88% 下降至 14.92%，儘管如
此，媒體語料的詔安腔錯誤率仍居高不下，即
使我們進一步針對分詞後的 OOV 去產生合成
語料，也僅僅是讓大埔腔的辨識結果稍微改
善，詔安腔的改善仍然有限。

對此，針對媒體語料進一步分析錯誤結果，
應是媒體語料含有比例不少的專有名詞，導致
即使模型已經在不同聲學環境、額外的 OOV
合成語料上訓練了，面對專有名詞依然是無法
妥善的辨識。

4.2 拼音軌

我們使用在漢字軌上較為有效的策略訓練拼音
軌的模型：在 k2 框架上採用自監督模型或是
預訓練模型，並適時增加語料，考慮到儘管腔
調不同，拼音書寫均為一致。在 Whisper 則
是直接使用比賽語料進行訓練。

由於 Whisper 解碼器的設計，將其重置再
訓練將會喪失訓練過大量語料的優勢，故我們
沿用原本的設定，微調中文語言讓他能夠輸出
拼音。而 k2 模型因沒有這類限制，所以我們
能夠直接訓練其解碼器輸出拼音。

實驗結果如表5，在錄音室語料上，兩種
k2 模型的拼音辨識結果都比 Whisper 更加
準確；在媒體語料方面，即使 Whisper 因預
訓練語料，比起 Zipformer-HuBERT 表現更
穩定，但其優勢並不如漢字軌一般明顯，一旦
換上 WenetSpeech 預訓練過的 Zipformer (下
稱 Wenet-Zipformer)，只需針對拼音解碼的
模型在整體的辨識效果上仍比較理想。如果我

們兩階段的先將 Wenet-Zipformer 用客委會3

的資料微調，再微調至 2023 & 2025 年的比賽
資料，能進一步改善模型的辨識結果，在熱身
賽的測試資料上達到平均字錯誤率 16.76%。

4.3 熱身賽結果

因為熱身賽的時程關係，繳交的時候我們在
漢字與拼音軌均使用 Whisper 的結果進行投
稿，漢字軌錯誤率 6.84% 取得了社會組及所
有隊伍的第一名，而拼音軌則取得了錯誤率
19.57%，位居所有隊伍的第三名。

4.4 決賽結果

考慮到決賽的語音可能也會與媒體測試語料
相似，我們將 75% 的媒體語料加入漢字軌
Whisper 的訓練，訓練過程的評估指標則使用
錄音語料與剩下的媒體語料計算，加入部分
媒體語料後的測試集可以觀察到明顯的改善，
若使用決賽語料去評估加入媒體語料前後的
辨識結果之字元差異，也能得到 10% 左右的
差異結果，故我們使用這顆 75% 媒體語料的
模型進行漢字軌辨識的結果提交，得到 CER
9.46% 的成績，位居所有隊伍的第三名。拼音
軌我們使用Wenet-Zipformer進行提交，儘管
拼音軌應能直接的辨識出不同腔調的拼音序
列，但訓練時並無納入媒體測試語料以及客委
會媒體語料，或許導致模型在複雜聲學環境仍
不夠強健，最終拿到了拼音 WER 30.44% 的
成績，位於所有隊伍的第八名。

5 結論與展望

此次比賽我們參考過去的實驗結果與經驗，透
過分析標記並增加合成語料，試圖改善詔安
腔媒體語料存在過多遺失字與專有名詞，導
致漢字軌辨識率居高不下的情況，不過因為
增加的絕大多數都屬於領域外資料，改善有
限。未來我們會試著探討語境學習 (Incontext
Learning) 或是熱詞等方式進行擴增或調校，
改善領域外資料的辨識效果。

3https://www.aclclp.org.tw/doc/hat_brief_c.pdf
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