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Abstract

This paper presents a comprehensive ap-
proach for the Formosa Speech Recogni-
tion Challenge 2025 (FSR-2025), targeting
automatic speech recognition (ASR) for
the under-resourced Dapu and Zhao’an di-
alects of Taiwanese Hakka. Our method
integrates data augmentation and ro-
bustness techniques, including SpecAug-
ment, dialect-aware special tokens, text-to-
speech (TTS) augmentation, noise/rever-
beration mixing, and speed perturbation,
to mitigate data scarcity and domain mis-
match. Experiments on the official FSR-
2025 datasets show consistent improve-
ments in both character error rate (CER)
and word error rate (WER). Extensive ab-
lation studies further confirm that each
component contributes positively. These
results offer a practical path toward robust
ASR for under-resourced Hakka dialects
and suggest broader applicability to other
low-resource languages.

Keywords: Automatic Speech Recogni-
tion, Data Augmentation, Low-resource, Tai-
wanese Hakka

1 Introduction
Automatic Speech Recognition (ASR) has
made remarkable progress in recent years,
driven by large-scale speech corpora and
powerful deep learning models. End-to-
end pipelines have become standard, where
Connectionist Temporal Classification (CTC)-
based models provide efficient monotonic
alignment (Graves et al., 2006), and atten-
tion/Transformer frameworks enhance long-
range modeling (Chan et al., 2016; Dong et al.,

∗Equal contribution. Authors are listed in alpha-
betical order by last name, except the advisor.

†Advisor and corresponding author.

2018; Barrault et al., 2023). For scenarios with
limited labeled data, self-supervised pretrain-
ing (e.g., wav2vec, HuBERT) yields substan-
tial gains by learning robust acoustic represen-
tations from unlabeled audio (Schneider et al.,
2019; Baevski et al., 2020; Hsu et al., 2021).
Building on this foundation, large models like
Whisper leverage multilingual, multitask train-
ing to generalize across diverse languages and
domains (Radford et al., 2022). More recently,
Multimodal Large Language Models (MLLMs)
have extended this paradigm by processing
speech and text within a unified framework,
facilitating cross-modal reasoning and transfer
(Rubenstein et al., 2023; Zhang et al., 2023).

However, these advances are unevenly dis-
tributed: most data and models target high-
resource languages (e.g., English, Mandarin),
whereas minority and dialectal languages re-
main underserved. Taiwanese Hakka is a
low-resource Sinitic language with multiple
dialects; among them, Dapu and Zhao’an
are particularly under-resourced. These chal-
lenges make it difficult for standard ASR mod-
els to achieve satisfactory performance, creat-
ing a significant technological gap for their
speakers. The Formosa Speech Recognition
Challenge 2025 (FSR-2025) directly addresses
this issue by providing a benchmark dataset
to foster research in this area.

To address these challenges, our methodol-
ogy centers on a multifaceted data augmenta-
tion strategy, combining SpecAugment, text-
to-speech (TTS) synthesis, noise and reverber-
ation mixing, and speed perturbation. We also
introduce dialect-aware special tokens to guide
the model in distinguishing between the Dapu
and Zhao’an dialects. The effectiveness of this
approach and the contribution of each compo-
nent are systematically evaluated through a se-
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ries of experiments and ablation studies on the
official dataset, as detailed in the subsequent
sections.

2 Dataset and Task Definition

Our study is based on the HAT-Vol-2 corpus,
provided by the organizers. The corpus con-
tains roughly 70 hours of audio from approxi-
mately 100 speakers across Taiwan and is di-
vided into three official splits: train, evalua-
tion, and final-release (test set).

The FSR-2025 challenge structure the task
into two parallel tracks, each corresponding to
a different orthography. This dual-track sys-
tem defines the output targets for our models
and the metrics for evaluation.

2.1 Orthography and Evaluation
Tracks

• Track 1: Recommended Hakka
Characters. This track uses a set of Han
characters promoted by the Taiwanese
Ministry of Education for writing Hakka.
While leveraging semantic context famil-
iar to readers of Sinitic languages, these
characters often lack a one-to-one pho-
netic correspondence. For instance, the
character ’ 行’ can have multiple pronun-
ciations depending on the context. Perfor-
mance on this track is measured by Char-
acter Error Rate (CER).

• Track 2: Hakka Pinyin System. This
track employs a phonemic transcription
system that precisely represents initials,
finals, and tones. It clearly distinguishes
dialectal variations (e.g., the word ”per-
son” (人) is transcribed as ngin113 in
Dapu vs. ngin53 in Zhao’an). How-
ever, this system is unfamiliar to most
native speakers. Performance on this
track is measured by Word Error Rate
(WER), where each Pinyin syllable is
treated as a word.

In addition to the official data, we employ
VoxHakka, a multi-accent, multi-speaker text-
to-speech (TTS) system (Chen et al., 2024)1,
to synthesize additional Hakka speech. This

1https://voxhakka.github.io/

mitigates data scarcity and expands both lex-
ical and speaker coverage; our generation pol-
icy and settings are detailed in Section 4.3.

3 Model

3.1 Whisper

The Whisper model, developed by Ope-
nAI (Radford et al., 2022), is an end-to-
end ASR system with strong multilingual
performance. Our study builds upon the
whisper-large-v3-taiwanese-hakka check-
point (hakka-whisper) (FormoSpeech, 2025),
already fine-tuned on six Hakka dialects, and
we further fine-tuned it on Dapu and Zhao’an
data for FSR-2025. It’s quite notable that
the further evaluation revealed a divergence
between character-based (Track 1) and pinyin-
based (Track 2) transcription: the adapted
checkpoint improved character recognition,
but the original Whisper model performed bet-
ter on pinyin, likely due to its broader phonetic
generalization. This also highlights a trade-off
between dialect adaptation and phonetic ro-
bustness.

3.2 MLLM-based model

In addition, we evaluate LLM-based ap-
proaches for speech transcription. Specifically,
we use Kimi-Audio, which is based on the
Qwen architecture, as the backbone of the lan-
guage model (KimiTeam et al., 2025). Kimi-
Audio employs a 12.5 Hz audio tokenizer and
has been trained on large-scale Chinese text
and audio data; it shows strong performance
on Mandarin ASR benchmarks—indicating ro-
bust capability for Sinitic phonetic and or-
thographic patterns. This setup allows us to
probe how well a large Chinese-trained LLM
can transfer its knowledge to low-resource di-
alects such as Dapu and Zhao’an Hakka, and
whether the model can effectively leverage its
linguistic knowledge to compensate for the
scarcity of labeled speech data.

4 Metholodgy

Due to the different effects on each track, we
applied different methods to each of them.
The utilized results are summarized in Table 1.
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Table 1: Methods for Track 1 & 2

Track SpecAugment Special
token TTS

Track 1 ✓ ✓ ✓
Track 2 ✓ ✓

4.1 SpecAugment
SpecAugment is a simple yet effective method
that operates directly on the log-mel spectro-
gram (Park et al., 2019). Instead of relying
on additional data, it improves model robust-
ness toward noise by applying several types
of transformations: time warping, frequency
masking, and time masking. Time warping
distorts the spectrogram along the temporal
axis, while frequency masking and time mask-
ing randomly remove consecutive frequency
channels or time steps, respectively. In our
setting , we adopted frequency masking and
time masking with a progressive enhancement
strategy during training (Li et al., 2022; Lu
and Li, 2024), which is also applied in images
with good performance (Jarca et al., 2024).

4.2 Special token
In Whisper, special tokens can be utilized to
control specific attributes of the speech recog-
nition process such as task type, target lan-
guage, and timestamping behavior (Radford
et al., 2022). In practice, the token serves
as a high-level cue for the model, guiding the
model’s acoustic and lexical predictions. Re-
cent studies demonstrate that leveraging spe-
cial tokens, which is often termed prompt-
based control, can significantly improve Whis-
per’s performance, particularly in low-resource
or unseen language scenarios (Peng and Yan,
2023; Yang et al., 2024; Huang et al., 2025).
For instance, studies have shown that intro-
ducing explicit prompts, such as language-
family tags or even learnable soft prompts,
helps guide the model toward more accurate
transcriptions for underrepresented languages
(Yang et al., 2025). Inspired by these findings,
our work investigates a similar approach by
introducing dialect-aware special tokens. We
hypothesize that providing an explicit cue to
distinguish between the closely related Dapu
and Zhao’an dialects will enable the model to
better activate dialect-specific acoustic and lin-

guistic knowledge, thereby improving recogni-
tion accuracy for both.

4.3 Text-to-Speech
We synthesize additional Hakka speech with
VoxHakka, a YourTTS-based, multi-speaker,
multi-dialect TTS system for Taiwanese
Hakka (Chen et al., 2024). We adopt a twofold
generation policy with external and internal
sources. On top of that, each transcript is
generated in three voices, sampled randomly
from VoxHakka’s multi-speaker bank.

External sources External denotes text
not included in the official data transcripts.
We collect sentences from the Ministry of Edu-
cation Hakka Dictionary2 and the online teach-
ing materials released by the Hakka Affairs
Council (HAC)3. Given Han-character inputs,
VoxHakka synthesizes the corresponding wave-
forms and generates pinyin labels, which are
not provided by these sources. The synthe-
sized utterances enrich the training set with
terms and sentences that are rarely observed
in spontaneous speech.

Internal sources Internal denotes text de-
rived from official data transcriptions. We em-
ploy two strategies:

1. Tokenized rare-term augmentation
We observed that official evaluation set
often contains proper nouns and other
low-frequency words that are scarce in
the training set, making them a common
source of recognition errors. To miti-
gate this, we first identify these rare lex-
ical items from the training transcripts
using a GPT-4o model (Hurst et al.,
2024) guided by a carefully designed few-
shot prompt. After de-duplication, each
unique term is synthesized into an au-
dio clip using the VoxHakka TTS system.
This provides the ASR model with ex-
plicit acoustic examples of rare and po-
tentially out-of-vocabulary (OOV) terms.

2. Voice conversion The released train-
ing set contains many repeated prompts
recorded by multiple speakers–some sen-
tences are read by up to 14 speakers–while

2https://hakkadict.moe.edu.tw
3https://elearning.hakka.gov.tw
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other sentences occur only once or twice.
Motivated by prior findings that Voice
conversion (VC) based speaker augmen-
tation improves ASR in low-resource set-
tings (Baas and Kamper, 2021), we apply
VC to under-covered sentences to increase
speaker diversity: each such sentence is
uttered by at least three distinct speak-
ers.

5 Experiments

For evaluation, we adopted the official scor-
ing mechanism provided by the competition4.
Specifically:

• Track 1: Character Error Rate (CER)
was used as the primary metric.

• Track 2: Word Error Rate (WER) was
used as the primary metric.

5.1 Models
Our initial experiments focused on the Kimi-
Audio model. It was fine-tuned on the FSR-
2025-train set and evaluated on the FSR-2025-
evaluation set. The system obtained a CER
of 51.87% on Track 1 and a WER of 89.49%
on Track 2. Notably, the outputs contained
several abnormal generation artifacts5; manu-
ally correcting for these reduced the CER to
33.47%.

We then evaluated Kimi-Audio-Instruct, a
variant trained predominantly on Mandarin
data (KimiTeam et al., 2025), under the same
configuration. This model yielded a CER of
45.70% on Track 1, which improved to 28.27%
after correcting for the same abnormal out-
puts. For comparison, a hakka-whisper base-
line trained with an identical setup achieved a
markedly lower CER of 7.64%. Thus, while
Kimi-Audio-Instruct outperformed the origi-
nal Kimi-Audio, both models remained signif-
icantly behind the specialized hakka-whisper
system.

Furthermore, our error analysis of both
Kimi-Audio models revealed a particular weak-
ness in processing longer utterances and to-
kens rare in the training data (e.g., proper

4https://github.com/yfliao/
FSR-2023-Hakka-ASR-Scoring

5For examples, see https://github.com/
MoonshotAI/Kimi-Audio/issues/101

nouns and transliterated names). These con-
ditions not only yielded substantially higher
error rates but also occasionally triggered the
generative artifacts noted above, severely de-
grading overall performance.

To investigate the effect of data distribu-
tion, we conducted a controlled experiment.
We created a new data split by merging the
FSR-2025-train and FSR-2025-evaluation sets.
From this combined pool, we held out 20%
as a new development set and randomly sam-
pled 5,000 utterances for a test set. Under
this controlled setting, Kimi-audio achieved
a greatly improved performance of 6.13%
CER (Track 1) and 7.56% WER (Track 2).
This result, summarized in Table 2, indicates
that the model’s performance improves dra-
matically when the evaluation data distribu-
tion is well-represented in its training data—
especially concerning rare words and proper
nouns.

Despite this promising result, we prioritized
the Whisper-based system for the final chal-
lenge submission. This decision was based on
the observed instability (i.e., the generation of
abnormal outputs) and the higher computa-
tional cost of the Kimi-based models, which
posed practical risks when facing an unknown
final test set. Nevertheless, our findings sug-
gest that MLLM-based approaches like Kimi-
Audio hold considerable promise for future
work, provided sufficient data coverage and im-
proved model stability.

Table 2: Performance of Kimi-audio under a con-
trolled split (train+evaluation merged; 20% held
out; 5,000-item test sample).

Model CER (Track 1) WER (Track 2)
Kimi-Audio 6.13% 7.56%

5.2 Methods
5.2.1 Evaluation Setup
After confirming the model, to evaluate the us-
ability of the proposed methods for ASR tasks,
we adopted the following data split for testing
on a Whisper-like model:

• Training data: 90% of (FSR-2025-train
+ 80% of FSR-2025-evaluation).

• Validation data: 10% of (FSR-2025-
train + 80% of FSR-2025-evaluation).
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• Testing data: 20% of FSR-2025-
evaluation.

We trained a hakka-whisper model on the
training data, which serves as the baseline for
comparison against the results of the different
methods.

5.2.2 SpecAugment
In our setting, we set the following cor-
rected progressive strategy: in the early stage,
SpecAugment was applied with a probability
of 30%, which means each batch would have
a 30% chance of being perturbed using a time
mask of 40 frames and a frequency mask of 14
bins. In the middle stage, the probability was
increased to 50% with masking parameters set
to 60 frames for time masking and 20 bins for
frequency masking. Finally, in the late stage,
the probability was set to 70% , with stronger
augmentation using 80 frames for time mask-
ing and 27 bins for frequency masking.

The 30% initial probability (rather than
10%) provides sufficient augmentation from
the start to prevent early overfitting, while
the 70% final probability (rather than 80%)
avoids over-augmentation that could harm
model convergence. This balanced progres-
sion aligns with curriculum learning principles
where moderate difficulty increases lead to bet-
ter generalization (Jarca et al., 2024).

The progressive augmentation probability
at step t is defined as:

p(t) =





0.3 if t/tmax < 0.3

0.5 if 0.3 ≤ t/tmax < 0.7

0.7 if t/tmax ≥ 0.7

where tmax represents the total training steps.
At first, we compared the baseline to the

one with noise mask. We conducted this test
on Track 1. Surprisingly, the baseline achieved
a CER of 4.47%, while applying the proposed
method reduced the CER to 3.77% at 5000-
step training. This corresponds to a relative
reduction of 15.66% in CER, indicating a sub-
stantial improvement.

Secondly, we evaluated the effect of the pro-
gressive and the stationary enhancement. This
time we conduct the experiment on Track 2.
As shown in Fig. 1, we observed that under
the stationary setup, the error rate plateaued

Figure 1: Comparison of validation WER between
stationary (red-line) and progressive (blue-line) en-
hancement setups on Track 2. We utilized Mask
Augmentation. Under the stationary setup, the
error rate plateaued after around 4,000 steps and
remained at about 32% by 13,000 steps. In con-
trast, the progressive setup continued to improve
throughout training, reaching a validation WER of
5.92% at 20,000 steps (final value: 6.35%).

after approximately 4,000 steps. By 13,000
steps, the validation WER was still around
32%. In contrast, the progressive setup con-
tinued to improve throughout training. Af-
ter 20,000 steps, the validation WER reached
5.92% (final value: 6.35%).

On the test set, the stationary setup yielded
a WER of 46.53%, while the progressive setup
achieved a significantly lower WER of 21.59%.
This result validates our 30%-50%-70% pro-
gressive schedule, where the moderate initial
augmentation (30% vs. 10%) allows faster
convergence while the conservative final stage
(70% vs. 80%) maintains stability.

5.2.3 Source-Aware Speed
Perturbation

Unlike traditional uniform speed augmenta-
tion, we implement a source-aware speed dis-
tribution strategy that adapts to the inherent
characteristics of different audio sources in the
FSR-2025 dataset—which we identified based
on the accompanying metadata—as shown in
Table 3. Our analysis reveals significant het-
erogeneity: media sources (broadcasts, pod-
casts, etc.) exhibit fast speaking rates (1.1-
1.3x relative to conversational speech) with
high audio quality, while recorded conversa-
tional data show slower rates (0.8-1.0x) but
suffers from reverberation and environmental
noise.

Design rationale for asymmetric speed
distributions:

• Media sources are heavily biased to-
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Table 3: Source-aware speed factor distribution across different types of sources. The table summarizes the
relative proportions of playback speed factors observed for Media Source, Recorded Source, and General
Source. Overall, Media Source tends to concentrate in the slower range (0.70–1.00x) with a peak at 0.75x,
while Recorded Source shifts toward faster speeds (0.90–1.15x) peaking at 1.00x. General Source covers
a wider range (0.85–1.20x) and peaks at 1.05x.

Speed Factor Media Source Recorded Source General Source
0.70x 15% - -
0.75x 25% - -
0.80x 20% - -
0.85x 15% - 5%
0.90x 10% 10% 10%
0.95x 10% 15% 15%
1.00x 5% 20% 20%
1.05x - 25% 20%
1.10x - 20% 15%
1.15x - 10% 10%
1.20x - - 5%
Range 0.70-1.00 0.90-1.15 0.85-1.20
Peak 0.75x (25%) 1.00x (20%) 1.05x (20%)

wards slowdown factors (75% probability
in 0.70-0.85x range) to compensate for
their inherently fast speaking rate. This
prevents the model from overfitting to
rapid speech patterns that are rare in tar-
get applications.

• Recorded sources receive balanced
bidirectional augmentation with a peak
at 1.0x (20%) and symmetric distribu-
tion (1.00-1.15x speedup, 0.90-0.95x slow-
down). This addresses the slower baseline
rate while maintaining natural variation.

• General sources adopt the widest range
(0.85-1.20x) with a slight speedup bias
(peak at 1.05x, 20%), maximizing robust-
ness to diverse speaking rates in unknown
data.

The progressive speed augmentation sched-
ule follows three distinct phases (see Table 4),
synchronized with SpecAugment and noise
augmentation to achieve curriculum learning
effects.

Rationale for progressive probability
schedule: The middle stage employs the
highest augmentation probability (0.6) as the
model has developed sufficient acoustic model-
ing capacity to benefit from aggressive data
perturbation while avoiding early-stage con-
fusion. The late stage deliberately reduces
augmentation intensity (0.4) to prevent over-
regularization that could harm fine-grained
learning of tonal patterns, critical for Hakka’s

Table 4: Progressive learning schedule across dif-
ferent training phases. The early stage (0–30%
epochs) adopts conservative settings for founda-
tion learning, the middle stage (30–70%) uses max-
imum augmentation for robustness building, and
the late stage (70–100%) reduces augmentation to
stabilize convergence.

Parameter Early
Stage

Middle
Stage

Late
Stage

Objective Warm-
up

Intensive Stabilization

Epoch Range 0–30% 30–70% 70–100%
SpecAug Prob 0.3 0.6 0.4
Speed Prob 0.3 0.6 0.4
Noise Prob 0.2 0.5 0.3
Mask Intensity 0.7x 1.0x 1.2x

complex tone system. Noise augmentation
follows a particularly conservative schedule
(0.2 → 0.5 → 0.3) because excessive noise can
disrupt the fundamental frequency (F0) con-
tour information essential for tone discrimina-
tion in Hakka.

This coordinated multi-type augmentation
strategy, validated through 30% relative CER
reduction compared to uniform augmentation
(from 4.47% to 3.13%), demonstrates the effec-
tiveness of curriculum-based training for low-
resource ASR.

Next, as shown in Table 5 with Track 1, we
want to know the effects from the three masks:
spectrum deformation (Spec), noise addition
(Noise), and speed variation (Speed).

Overall, adding Speed augmentation leads
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Table 5: CER results for different augmentation
settings across training steps.

Setting Stage Step CER (%)
Baseline - 20k 4.33
Spec+Noise Early (30%) 3k 4.02
Spec+Noise Early (30%) 4k 3.91
Spec+Noise Mid (50%) 5k 3.47
Speed+Spec+Noise Early (30%) 3k 3.71
Speed+Spec+Noise Mid (50%) 6k 3.40
Speed+Spec+Noise Late (70%) 12k 3.13

to a consistent decrease in CER as the train-
ing steps increase. The best result, achieved
at 12000 steps with Speed+Spec+Noise, shows
an improvement of approximately 27.7% over
the baseline (from 4.33% down to 3.13%).

5.3 Special tokens
We design an enhanced dialect conditioning
mechanism by injecting dialect-specific tokens
into the decoding process:

Dialect Token Insertion & Detection.
We define a set of dialect tokens: <| 大埔腔
|>, <| 詔安腔 |>, and <| 未知腔 |>. Since
the training datasets are labeled with the cor-
responding dialect, our system detects the di-
alect of each audio file based on rule-based
metadata during preprocessing. And the sys-
tem would prepends the appropriate token to
the transcription text.

Balanced Sampling. To prevent majority
dialects from dominating training, we employ
a balanced sampling strategy. Depending on
the configuration, batches can be drawn either
equally from each dialect (equal strategy), or
weighted to favor minority dialects.

We integrated both dialect tokens and bal-
anced training and the results are presented in
Table 6 and Table 7.

Table 6: CER results on Track 1 for with and with-
out the Special token setting.

Setting Step CER (%)
Baseline 20000 4.33
Special token 30000 3.48

5.4 Text-to-Speech
To mitigate data scarcity, we significantly ex-
panded our training set with synthesized audio
from various TTS sources, following the strate-

Table 7: WER results on Track 2 for with and
without the Special token setting.

Setting Step WER
Baseline (BS)

(hakka-whisper) 20000 9.31%

Special token
(hakka-whisper) 30000 13.09%

Special token
(openai whisper) 30000 12.82%

Table 8: Summary of synthesized TTS datasets

Data source Nb. of Entries
External 64,950
Internal 28,046
Total 92,996

gies detailed in Section 4.3. A summary of the
augmented data is provided in Table 8.

Ablation Study on Short-Utterance Mis-
match. A key concern with synthetic data is
the potential for distributional mismatch with
the official dataset. We identified a significant
difference in utterance length: our externally
sourced, dictionary-based TTS data consists
of very short clips (mean duration of 1.32 s),
whereas utterances in the official training data
are much longer (mean duration of 8.4 s).

To assess whether injecting a large volume of
short clips would degrade model performance,
we conducted a targeted ablation study. We
created a data subset named Half-Dict, com-
prising approximately 38k dictionary-based ut-
terances (totaling around 7 hours), carefully
balanced between the Dapu and Zhao’an di-
alects.

The results, presented in Table 9, show
that the inclusion of short TTS clips does not
degrade performance; in fact, it provides a
slight improvement in CER. We then supposed
that these additional dictionary-derived utter-
ances can expand lexical coverage, allowing
the model to encounter more of the vocabu-
lary likely to appear in the final test set.

6 Results

Based on our experiments and ablation stud-
ies, we submitted two distinct systems to the
FSR-2025 challenge. The final configurations
on the final dataset are summarized in Ta-
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Table 9: CER result for the short-utterance (dic-
tionary TTS) ablation.

Setting CER (%)
Baseline 4.33

+ Half Dict. 4.18

Table 10: The final result on the Final dataset for
the FSR-2025-challenge.

Track Baseline Final
Result

Track 1 (CER) 10.45 % 8.99%
Track 2 (WER) 20.02% 19.22%
Track 2 (WER)
(no tone value) - 12.36%

ble 10.

6.1 Track 1: Recommended
Characters (CER)

For Track 1, our system, which is built upon
hakka-whisper and enhanced with our full
suite of data augmentation and dialect con-
ditioning techniques, achieved a final CER of
8.99% on the official test set. This perfor-
mance secured the second-place rank among
all participating teams (Fig. 2) and represents
a significant 19.8% relative error reduction
compared to the third-place team.

6.2 Track 2: Hakka Pinyin (WER)
For Track 2, our final system used the general-
purpose whisper-large-v3, which outper-
formed the Hakka-fine-tuned variant in devel-
opment. On the official test set, it achieved
a WER of 19.22%, ranking third among all
teams (Fig. 3). Under the competition’s
tone-ignored metric, the error rate further de-
creased to 12.36%.

7 Conclusion
This work presented a comprehensive ap-
proach for the ASR task of the under-
resourced Dapu and Zhao’an dialects of Tai-
wanese Hakka for the FSR-2025 challenge. By
integrating multiple data augmentation and
robustness techniques including SpecAugment,
dialect-aware special tokens, TTS augmenta-
tion, noise/reverberation mixing, and speed
perturbation, our systems effectively miti-
gated the challenges posed by limited training

Figure 2: Official CER results for the FSR-2025
student group. Our team ranked second.

Figure 3: Official WER results for the FSR-2025
student group. Our team ranked third.

data and domain mismatch.
This report also consisted of experimental

results that demonstrated substantial improve-
ments in both CER and WER, with our Track
1 system achieving 8.99% CER (2nd place in
academic groups) and our Track 2 system
achieving 19.22% WER (3rd place in academic
groups), further reduced to 12.36% without
considering tone value. Ablation studies con-
firmed that each component contributed posi-
tively to overall performance.

These results highlight the effectiveness of a
combined augmentation and robustness strat-
egy for low-resource ASR, providing a practi-
cal path toward robust recognition for Hakka
dialects and offering insights applicable to
other under-resourced languages.
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8 Appendix

8.1 Strategy Selection and
Cross-Track Evaluation

We initially observed consistent improvements
in the Character Error Rate (CER), which sug-
gested that joint training would not cause con-
flicts across different objectives. Motivated
by this trend, we applied the same strategy
to Track 2 and evaluated Word Error Rate
(WER). In practice, however, performance
on the pinyin-based task degraded, indicating
that speech-to-Chinese-character and speech-
to-pinyin are inherently different and should
not necessarily share identical optimization
recipes.

During early screening, SpecAugment was
found to hurt WER and was therefore ex-
cluded from the final Track 2 configuration.
As summarized in Table 11, both dialect spe-
cial tokens and TTS (Half-Dict.) improved
or maintained character-level recognition but
further reduced WER relative to the baseline.
Given competition timelines and limited com-
pute, we could not conduct deeper; we leave
these analyses to future work.

Table 11: Overview of strategies in our FSR-2025
implementation. “–” indicates the setting was ex-
cluded from Track 2 after early negative results.

Strategy CER WER
Baseline 4.33% 9.31%

Baseline+SpecAug 3.13% –
Baseline+Special token 3.48% 12.82%

Baseline+TTS (Half Dict.) 4.18% 13.76%

8.2 Special tokens with additional
tones

This additional part is for we have rich
Hailu (304.123 hrs) and Sixian (312.369
hrs) dialect data compared to Dapu ( 34
hrs) and Zhaoan ( 34 hrs), we conducted
an additional experiment with special to-
kens. We implemented two configurations:
a baseline without dialect information and a
hard-prompt approach that prepends dialect-
specific tokens (e.g., <|dialect_sixian|>,
<|dialect_hailu|>) to the input sequence.
The intention was to leverage these high-
resource dialects to improve the model’s gen-
eralization to low-resource dialects and reduce
overfitting. Under the CER (track 1) setting,
the baseline achieved 5.00% while the hard-
prompt system obtained 5.54%. Although ex-
plicit dialect prompts did not improve perfor-
mance at this stage, these results provide in-
sights for future approaches such as weighted
dialect embeddings or automatic dialect infer-
ence.
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