
Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025), pages 499–503
November 20-22, 2025 ©2025 Association for Computational Linguistics

A Channel-Aware Anomaly-Guided Data Augmentation
Framework for the FSR-2025 Hakka Speech Recognition

Challenge

Siang-Ting Lin, Arthur Hao, Chiun-Yu Hua, Kuan-Tang Huang,
and Berlin Chen

National Taiwan Normal University, Taiwan
{61347114s, 41247050s, 614k0009c, 61347002s, berlin}@ntnu.edu.tw

Abstract

The Formosa Speech Recognition Chal-
lenge 2025 (FSR-2025) focuses on Tai-
wanese Hakka, a low-resource language
with limited data diversity and chan-
nel coverage. To address this chal-
lenge, we propose a channel-aware, data-
centric framework that leverages multilin-
gual foundation models to mitigate mis-
matches between field recordings and train-
ing data. Our method integrates unsu-
pervised anomaly detection and channel-
conditioned augmentation to enhance data
representativeness before ASR fine-tuning,
aiming to explore the potential for im-
proving robustness in low-resource Hakka
speech recognition.
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1 Introduction
Hakka remains a low-resource language for Au-
tomatic Speech Recognition (ASR). The chal-
lenge goes beyond limited overall data avail-
ability: it is particularly difficult to collect
speech that adequately covers diverse real-
world conditions, such as background noise,
channel variability, and device or room effects.
As a result, existing systems trained on insuf-
ficiently diverse data often lack robustness to
these factors, which severely undermines prac-
tical deployment (Lu et al., 2023; Yang et al.,
2023; Chen et al., 2023).

To address this gap, we adopt a data-centric
pipeline that leverages multilingual resources
while explicitly targeting the mismatch be-
tween field recordings and training data. Con-
cretely, we first perform channel-aware data
preprocessing and augmentation, and fine-

tune Whisper (Radford et al., 2022) on the
curated data.

An overview of the proposed data-centric
pipeline is illustrated in Figure 1. The frame-
work comprises three main modules corre-
sponding to the system workflow: (1) Target
Data Selection, where an anomaly detector
based on Deep SVDD (Ruff et al., 2018) scores
the test set to identify anomalous samples; (2)
Simulation Data Generation, which em-
ploys CADA-GAN (Wang et al., 2025) to syn-
thesize channel-aware augmented data; and
(3) ASR Fine-Tuning, where the augmented
and original training sets are jointly used
to fine-tune the Whisper-based model. This
three-stage pipeline unifies anomaly detection,
simulation, and fine-tuning in a data-centric
manner to address the channel mismatch prob-
lem in low-resource Hakka ASR.

Our design is pragmatic for the Hakka-in-
the-wild setting: distribution shifts are often
dominated by channel and environmental fac-
tors, e.g. device, room, reverberation, inter-
mittent noise, which are only weakly captured
by content- or speaker-centric supervision. We
therefore separate two roles. First, a channel-
aware anomaly detector operates on utterance
embeddings to surface target-domain risks
without labels and to prioritize channel con-
ditions that the original training set under-
covers. Second, a channel-aware augmentation
stage consumes these rankings/statistics to ex-
pose the model to those under-represented con-
ditions before fine-tuning.

Methodologically, our detector reuses an
MFA-Conformer (Zhang et al., 2022) back-
bone to produce utterance-level embeddings,
with channel supervision following prior
channel-aware work. Per channel group, we
adopt a lightweight two-layer Multi-Layer Per-

499



Figure 1: Overview of our data-centric pipeline. After training the anomaly detector with the training set
using Deep SVDD, the detector scores the test set to filter anomalous samples (see Sec. 3.1 Target Data
Selection). The selected data are then used to drive channel-aware simulation and data augmentation (see
Sec. 3.2 Simulation Data Generation). Finally, the augmented and original training data are combined
to fine-tune the Whisper-based ASR model (see Sec. 4.2 Model Configuration).

ceptron (MLP) with a Soft-boundary deep
SVDD objective to score outliers; thresholds
are derived from training-score quantiles and
lightly calibrated on the target domain with-
out retraining. This keeps the pipeline simple,
label-free on the target side, and aligned with
downstream augmentation and Whisper-based
fine-tuning.

Contributions. (1) A channel-aware, data-
centric pipeline for low-resource Hakka ASR
that couples unsupervised detection with tar-
geted augmentation prior to Whisper-Large
fine-tuning. (2) A per-channel anomaly de-
tector (MFA-Conformer embeddings + Soft-
boundary deep SVDD) with bounded, no-
retraining calibration to steer flag rates to-
ward a target band. (3) An end-to-end recipe
that prioritizes under-covered channel condi-
tions and demonstrates improved robustness,
evaluated with character error rate (CER) in
realistic Hakka settings.

2 Background
2.1 Anomaly Detection
Anomaly detection identifies samples that de-
viate from the prevailing data distribution and
is widely used in fraud, security, and industrial
monitoring (Chandola et al., 2009; Schölkopf
et al., 1999). In our low-resource Hakka auto-
matic speech recognition (ASR) task, its role
is to surface target-domain risks without la-
bels and prioritize channel conditions that the

original training set under-covers. Concretely,
we use it to: (i) group utterances by chan-
nel, (ii) score and flag outliers per channel,
and (iii) hand off ranked items/statistics to
the downstream channel-aware augmentation
stage (Sec. 3.1).

Why channel supervision (and how it
relates to this task). Utterances are en-
coded by an MFA-Conformer backbone. In
line with channel-aware work such as CADA-
GAN (Wang et al., 2025), we train the en-
coder with channel supervision and at deploy-
ment reuse the learned channel discriminator
to assign each utterance to a channel group.
We adopt channel supervision as a pragmatic
match to anticipated sources of shift in field
Hakka recordings: prior channel-aware studies
indicate it can emphasize channel factors and
partially disentangle them from speaker or lin-
guistic content. We do not claim general supe-
riority over speaker-, phonetic-, or noise-type
supervision; rather, this choice aligns with
the channel-conditional analysis and augmen-
tation used in our pipeline.

2.1.1 Deep SVDD

Deep SVDD (Ruff et al., 2018) learns an end-
to-end hypersphere in a task-specific feature
space so that normal data lie inside while vio-
lations indicate anomalies. We adopt the soft-
bound variant with a lightweight two-layer
MLP.
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Score. Let x be the encoder embedding for
a sample assigned to group g. For the detector
we standardize x and apply PCA to 128 dimen-
sions: x̃ = PCA128(Standardize(x)). With a
two-layer MLP fθ (hidden 128, output 64) and
group center cg, the anomaly score is

s(x̃) =
∥∥fθ(x̃)− cg

∥∥2
2
. (1)

Soft-boundary Deep SVDD loss.
Within group g we optimize

Lg(θ,Rg) = R2
g +

1
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E
[
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where Rg is the radius, νg ∈ (0, 1) trades
tightness vs. violations, and {W l} are layer
weights (implemented via AdamW weight de-
cay). After each epoch, R2

g is set to the (1−νg)
quantile of training scores; the decision thresh-
old is τg =R2

g. A test utterance is anomalous
in group g iff s(x̃) > τg. For cross-group pri-
oritization we use a rarity indicator computed
against each group’s training-score distribu-
tion (no label usage), which feeds the channel-
aware augmentation in Sec. 3.1.

3 Method

3.1 Target Data Selection
Scope. The unlabeled target domain (final
test audio) is used solely for unsupervised scor-
ing, per-channel thresholding, and ranking; no
labels are accessed and no model parameters
are updated with target data.

Pipeline. (1) Channel grouping. Reuse
the channel-supervised encoder (Wang et al.,
2025) to assign each utterance to a group g
(grouping uses original encoder embeddings).
(2) Detector features. For Deep SVDD we stan-
dardize embeddings and apply PCA to 128
dimensions (PCA=128). (3) Detector model.
Within each group, train a two-layer MLP fθ
(hidden 128, output 64). Let x be the encoder
embedding and x̃ = PCA128(Standardize(x)).
Define z = fθ(x̃) and the group center cg
(mean of training z).

Thresholding and calibration (no re-
training). After each epoch we set R2

g to the
(1− νg) quantile of training scores in group g;
the decision threshold is τg=R2

g. At test time
we keep fθ and cg fixed and adjust only νg
(hence τg) within bounds (e.g., [0.01, 0.10]) to
steer the group’s flag rate toward a target
band (∼5%). This auto-calibration accommo-
dates train–test mismatch without updating
model parameters.

Decision and ranking. A test utterance in
group g is anomalous iff s(x̃) > τg. For cross-
group prioritization we use a stable ordering:
(1) anomalous first ⇒ (2) smaller rarity indi-
cator (tail probability, computed against the
group’s training scores) ⇒ (3) larger s. The
resulting per-channel flag rates and thresholds
{(νg, τg)} guide channel-aware augmentation
to expose the ASR model to characteristics
under-covered by the original training set.

3.2 Simulation data generation

We adopt CADA-GAN, a Channel-Aware
Domain-Adaptive Generative Adversarial Net-
work proposed by Wang et al. (Wang et al.,
2025). The model is specifically designed to
address channel mismatch in ASR by gener-
ating augmented speech data conditioned on
channel characteristics. In our framework,
CADA-GAN is used to synthesize additional
training utterances, enriching the channel di-
versity of the training set.

Channel encoder: The data identified by
the Deep SVDD method are used as the target
source and processed by the MFA conformer to
extract channel-aware representations. These
representations are subsequently employed in
the generator via Feature-wise Linear Modula-
tion (FiLM)(Perez et al., 2018), where they are
transformed into weights and biases to modu-
late the data generation process.

Generator and Discriminator: During
this process, the generator integrates the en-
coded source data with FiLM to synthesize
simulated data, while the discriminator en-
forces consistency between the generated data
and both the intrinsic characteristics of the
original source data and the embeddings of the
target data.
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4 Experimental Setup
4.1 Dataset

Sentences Hours
Train 21,879 52
Eval 5,470 8
Test(warm-up) 4,404 10
Total 31,753 70

Table 1: Dataset statistics of the FSR-2025-Hakka
corpus.

We use the FSR-2025-Hakka corpus as our
primary dataset. The train set contains a total
of 60 hours of speech, evenly divided between
two dialects: Dapu and Zhao’an (30 hours
each). From this corpus, 20% of the data is
randomly selected as the Eval set, while the re-
maining 80% is used as the Train set. The Test
set consists of 10 hours of speech released for
the warm-up phase, which is employed to eval-
uate inference performance after fine-tuning.
The dataset composition is summarized in Ta-
ble 1.

4.2 Model Configuration
We employed OpenAI’s Whisper-Large model
as our base architecture. The model configu-
ration consisted of the following components:

Pre-trained Model We utilized the
“openai/whisper-large” pre-trained model,
which provides robust multilingual speech
recognition capabilities. To optimize training
efficiency and prevent catastrophic forget-
ting of learned features, we applied encoder
freezing strategy, allowing only the decoder
parameters to be updated during fine-tuning.

Training Strategy Our training approach
employed the Seq2SeqTrainer framework. We
set the batch size to 8 and accumulated gra-
dients over 8 steps, yielding an effective batch
size of 64. The model was optimized with a
learning rate of 1 × 10−4, scheduled linearly
with 1,000 warmup steps. Training proceeded
for 20 epochs with early stopping based on val-
idation performance. To mitigate overfitting,
we applied a weight decay of 0.01, while gra-
dient clipping was enforced with a maximum
norm of 1.0. For efficiency, we enabled mixed-
precision training (FP16) and activated gradi-
ent checkpointing to reduce memory consump-
tion.

The training dataset comprised Hakka
speech data from Dapu and Zhao’an dialect
variants with total 60hr data

4.3 Evaluation Metrics
Following established practices in automatic
speech recognition evaluation , we employed
Character Error Rate (CER) as our primary
evaluation metric, which is particularly suit-
able for Chinese languages including Hakka.

CER The CER measures recognition accu-
racy at the character level and is computed
as:

CER =
S +D + I

N
× 100%, (3)

where S represents character substitutions, D
represents deletions, I represents insertions,
and N is the total number of characters in the
reference transcript.

5 Results
Table 2 shows the CER of different train-
ing settings. Without preprocessing, the
baseline system achieved a CER of 16.07%.
Through systematic experimentation with dif-
ferent augmentation ratios, we identified 13%
augmented data as the optimal configuration,
yielding a CER of 15.13% when the augmented
samples were generated to simulate the test set
channel characteristics.

These results demonstrate that our pro-
posed augmentation method achieves substan-
tial performance improvement, with the opti-
mal 13% augmentation ratio providing a 0.94
percentage point reduction in CER compared
to the baseline, confirming the effectiveness of
our channel simulation approach.

Method CER
w/o Preprocessing 16.07%
Add 13% augmented data 15.13%

Table 2: CER Compare Table.

6 Conclusion and Future Work
This work presents a channel-aware, data-
centric pipeline that combines unsupervised
anomaly detection with targeted augmenta-
tion to address channel mismatch in low-
resource Hakka ASR. By incorporating 13%
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channel-simulated data, our approach reduces
CER to 15.13%, achieving a 0.94-point im-
provement over the baseline. Our results
demonstrate enhanced model robustness in re-
alistic, noisy environments, validating the ef-
fectiveness of channel-focused augmentation.

For future work, we plan to extend the
preprocessing pipeline to include semantic-
and noise-specific analysis, enabling more fine-
grained supervision of both linguistic and
acoustic variations. In particular, long-
duration noise segments, which may currently
be misclassified as channel shifts, will be ad-
dressed through targeted refinement. More-
over, we will further investigate the role of
FiLM modulation, as excessive influence from
the generator may overpower the modulation
process and reduce the contribution of source
data, potentially limiting the effectiveness of
synthetic augmentation.

7 Limitation
Data scale and coverage. Hakka remains
low-resource; the amount and channel diver-
sity of transcribed training audio constrain
fine-tuning effectiveness. Coverage gaps (de-
vices/rooms/reverberation patterns) limit how
well Whisper-Large can adapt, even with tar-
geted augmentation.
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