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Abstract

In recent years, large-scale pre-trained
speech models such as Whisper have been
widely applied to speech recognition.
While they achieve strong performance on
high-resource languages such as English
and Mandarin, dialects and other low-
resource languages remain challenging due
to limited data availability. The
government-led “Formosa Speech in the
Wild (FSW) project” is an important
cultural preservation initiative for Hakka, a
regional dialect, where the development of
Hakka ASR systems represents a key
technological milestone. Beyond model
architecture, data processing and training
strategies are also critical. In this paper, we
explore data augmentation techniques for
Hakka speech, including TTS and
MUSAN-based approaches, and analyze
different data combinations by fine-tuning
the pre-trained Whisper model. We
participated in the 2025 Hakka FSR ASR
competition (student track) for the Dapu
and Zhaoan varieties. In the pilot test, our
system achieved 7th place in character
recognition (CER: 15.92) and 3rd place in
pinyin recognition (SER: 20.49). In the
official finals, our system ranked 6 in Hanzi
recognition (CER: 15.73) and 4 in Pinyin
recognition (SER: 20.68). We believe that
such data augmentation strategies can
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advance research on Hakka ASR and
support the long-term preservation of
Hakka culture.
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1 Introduction

In recent years, Taiwan has actively invested in
the preservation and development of national
languages, and has promoted mother-tongue
education in primary and secondary schools. In
addition to Taiwanese (Southern Min),
Indigenous languages, and the languages of
Southeast Asian new immigrants, Hakka has also
been a major focus. To encourage its daily use,
teaching, and revitalization, the “Formosa Speech
in the Wild (FSW) project” has launched dialect
preservation initiatives, including the
organization of the FSR community competition
for Hakka automatic speech recognition (ASR).
This shared task provides timely benchmarks and
resources, with the second edition held in 2025.
Hakka belongs to the Sinitic branch and
encompasses multiple regional phonological
systems. In particular, the Dapu and Zhaoan
varieties used in the 2025 competition differ not
only in segmental systems but also in prosody,
such as tone and duration. Over the long term, the
lack of a widely adopted writing system,
combined with the declining use of Hakka among
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younger generations, has restricted the
availability of annotated corpora. From a cultural
perspective, however, Hakka is central to the
transmission of Hakka heritage; from a
technological perspective, ASR can support
pronunciation assessment and computer-assisted
language learning.

We approach Hakka ASR as a data-centric
transfer learning challenge, emphasizing the
strategic fine-tuning of the powerful general-
purpose foundation model Whisper-large-v3
(Radford et al., 2023) to enhance performance on
Hakka corpora. We chose Whisper as our
backbone model due to its verified multilingual
capability, stability in transfer learning, and

feasibility on commonly available GPU hardware.

To address the limited training data for the Dapu
and Zhaoan dialects, we adopted several
strategies:

(1) extending the training set with synthetic speech
generated by a Text-to-Speech (TTS) system;
(i1) collecting audio-text pairs from publicly
available Hakka learning platforms, following the
procedure described by Chen et al. (2023), to
construct additional training data for the Dapu and
Zhaoan  dialects  (restricted to  Hanzi
transcriptions);

(iii) incorporating speech and text from Hakka
radio broadcasts in the same dialects. For data
augmentation, we first applied MUSAN (Snyder
et al., 2015) to inject random noise, and further
employed Audiomentations (Ronny, 2020) to
introduce dynamic perturbations within each
training batch, thereby improving model
robustness. In the 2025 FSR Hakka ASR
competition (student track), our system achieved
7th place in Hanzi recognition (Character Error
Rate, CER: 15.92) and 3rd place in Pinyin
recognition (Syllable Error Rate, SER: 20.49)
during the pilot test. In the official finals, our
system ranked 6th in Hanzi recognition (CER:
15.73) and 4th in Pinyin recognition (Word Error
Rate, WER: 20.68).

The following sections describe in detail our
strategy for leveraging Whisper, the methods used
for data augmentation and corpus expansion, and
the full set of experimental results, highlighting

the effectiveness and limitations of each approach.

Finally, we discuss the broader implications of
our findings for speech technology, especially in
the context of preserving and revitalizing cultural
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languages. Through this study, we aim to provide
methodological insights and practical tools for the
future development of Hakka ASR and other low-
resource language technologies.

2 Model Architecture

We use the fine-tuned Whisper model as our final
submission to the competition. In addition, we
perform fine-tuning on LLaMA-Omni for
comparison. The details and descriptions of both
models are presented below.

2.1 Whisper

In this competition, we adopt Whisper as the
backbone model, following the approach of Lu et
al. (2023). Whisper is an encoder-decoder ASR
model pretrained on large-scale speech-text
corpora. Our fine-tuning strategy focuses
specifically on the decoder for the following
reasons:

(i) We aim to fully leverage the pretrained
knowledge on the encoder side. We assume that
Whisper’s encoder, which is responsible for
encoding acoustic information, has strong
generalization ability across different languages.
Therefore, rather than fine-tuning the encoder on
a small amount of target data—which might risk
degrading this generalization—we retain its
pretrained capacity as much as possible.

(i1) We regard the decoder as the component that
adapts to the target language. From the
perspective of a traditional language model, the
decoder primarily handles the mapping from
acoustic features to linguistic representations.
Since this process must reflect the characteristics
of the target language (e.g., Hanzi or Pinyin
language models), fine-tuning the decoder is a
reasonable and effective choice.

2.2 LLaMA-Omni

With the recent rise of large audio—language
models (LALMs), such as those proposed by
Zhang et al. (2023) and Chu et al. (2024), we
conducted additional experiments using the



Source Dataset Name Usage Duration(hr) | Description
Organizer FSR-2025-Train Train set 62.0 | Official  training  corpus
provided released by  competition
organizers.
FSR-2025-Record Train set 7.2 | Pilot-test subset
Test set 0.8
FSR-2025-Media Train set 1.6 | Pilot-test subset
Eval set 0.2
Test set 0.2
Web collected | Hakka Radio Train set 11.0 | Transcribed broadcast speech
Hakka E-Learning Train set 16.0 | Educational reading material
TTS generated | FSR-Website-TTS Train set 335.0 | Synthetic speech from VITS
trained on FSR-2025-Train.
FSR-Media-TTS Train set 8.0 | Synthetic speech from VITS
trained on FSR-2025-Train
Competition P-test Test set 1.0 | 1 hr subset (0.8 Record + 0.2
test sets Media)
F-test Test set 10.0 | Final competition set.

Table 1 Summary of all speech datasets used in this study

LLaMA-Omni model (Fang et al., 2024). The
original architecture employs an 8B large
language model; however, in our implementation,
we replace it with a smaller 1B-parameter
LLaMA (Dubey et al., 2025) variant to better
accommodate limited GPU resources. The
architecture integrates the Whisper-large-v3
encoder, and a linear adapter is inserted between
the encoder and the LLM to align their feature
dimensions by projecting the encoder output into
the LLM’s embedding space.

For fine-tuning, we follow a similar strategy by
freezing the Whisper encoder to preserve its
pretrained capacity for extracting meaningful
speech representations. The adapter and LLM
components are then trained jointly, enabling the
model to adapt to the downstream task. This setup
allows us to leverage the robust acoustic
representations from the frozen encoder while
focusing computational resources on adapting the
modality-bridging adapter and the large language
model to the target language domain. This
configuration serves as a comparative baseline
against our Whisper-only fine-tuning approach.

3 Data Sources

We first remove silence segments from all speech
data to avoid adverse effects on model training. In
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addition, all corpora—including both the
organizer-provided data and our self-collected
resources—are resampled to 16 kHz to ensure
consistency with the model requirements. Below,
we describe our data augmentation and
processing methods, as well as the training
mechanism for data utilization. The overall
pipeline of our data processing and model fine-
tuning framework is illustrated in Figure 1. A
detailed summary of all datasets used in this work
is provided in Table 1.

3.1 FSR Hakka Challenge

As summarized in Table 1, the datasets used in
this study can be grouped into three categories: (i)
official FSR corpora released by the organizers,
(i) web collected resources, and (iii)) TTS-
generated synthetic speech. These corpora
collectively provide complementary coverage of
read and spontaneous Hakka speech, forming the
basis for the experiments in Section 4.
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Figure 1: Overall architecture of the AS-SLAM
system for Hakka ASR.

3.2 Web-Collected

We extracted speech-text pairs for both the Dapu
and Zhaoan dialects from two publicly available
online resources: Hakka E-learning and Hakka
Radio.

The duration and usage of the web-collected
datasets are summarized in Table 1. Specifically,
The Hakka Radio corpus  comprises
approximately 9 hours of Dapu speech and 2
hours of Zhaoan speech, collected from broadcast
programs in which native speakers discuss daily
topics in a spontaneous conversational style.

These recordings exhibit diverse acoustic
environments, speaker variations, and natural
prosodic patterns. Owing to their broadcast nature,
we hypothesize that the distribution of Hakka
Radio more closely resembles that of the FSR-
2025-Media subset. In contrast, the Hakka E-
Learning corpus includes 8 hours each for Dapu
and Zhaoan, originating from educational
materials on the official Hakka E-learning
platform. The utterances are primarily short, card-
style sentences in which speakers read isolated
words or short phrases aloud. Because of its clear
articulation and relatively clean recording
conditions, their corpus shares greater similarity
with the FSR-2025-Record subset. Since the
transcripts of both datasets are in Hanzi, they are
used exclusively for the Hanzi track of the
competition.

! https://hakkadict.moe.edu.tw/resource_download/
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3.3 TTS-Generated

We adopt the Variational Inference Text-to-
Speech (VITS) model (Kim et al., 2021) for
speech synthesis, following the approach of Chen
et al. (2023). During model training, we use both
the official training data provided by the
organizers and our self-collected resources.
Separate TTS models are trained for the Dapu and
Zhaoan dialects. For text prompts, we collect
150,000 example sentences from Hakka
dictionary online published by the Hakka Affairs
Council'. As summarized in Table 1, the official
FSR-2025-Train corpus includes 123 speakers
across both dialects and genders. From this pool,
five speakers are randomly selected, and each
generates 67 hours of speech, resulting in a total
of 335 hours of synthetic data (denoted as FSR-
Website-TTS). In addition, to enhance the
coverage of media-style speech, we reuse the
previously trained TTS models to perform speech
synthesis using the transcriptions from the FSR-
2025-Media dataset (1.6 hours of text). For each
dialect, five speakers are randomly sampled, and
each generates 1.6 hours of speech, resulting in a
total of 8 hours of synthetic data (denoted as FSR-
Media-TTS). Due to time constraints, only Hanzi
transcriptions were used for speech synthesis.

4 Data Augmentation

We divide our data augmentation into two
strategies—static and dynamic—following the
two-stage approach proposed by Bhat et al.
(2025), which are described as follows.

The overall workflow of both augmentation
stages and their integration with the Whisper fine-
tuning pipeline is illustrated in Figure 1. As
shown in the figure, all audio sources—including
competition data, TTS-generated data, and web-
collected corpora—first pass through a static
augmentation stage (MUSAN), followed by
dynamic augmentations applied online during
model training.

These two levels of augmentation jointly
enhanced the model’s robustness to noise,
channel, variation, and acoustic mismatch across
domains.


https://hakkadict.moe.edu.tw/resource_download/

4.1 Static Data Augmentation

We employ the MUSAN (Snyder et al., 2015)
toolkit, MetricAug (Wu et al., 2023), and the
method proposed by Ko et al. (2023) for data
augmentation, adding noise to clean speech
before the training stage. The noise level is
controlled by a randomly sampled signal-to-noise
ratio (SNR) between 0 and 15 dB, following the
configuration described in Pligin-SE (Chen et al.,
2024). This static stage serves as the offline
augmentation block shown in Figure 1 , ensuring
that each input waveform exhibits realistic
acoustic diversity prior to entering the dynamic
augmentation pipeline.

4.2 Dynamic Data Augmentation

We apply the Audiomentations * toolkit for
dynamic data augmentation. Unlike static data
augmentation, this method is integrated directly
into the training process. Before each sample is
fed into the model, the following transformations
are independently applied, following the
configuration described in Dynamic Mixing

(Choi et al, 2022) and Aligned Data
Augmentation (Lam et al., 2021): GaussianNoise
(minimum amplitude = 0.001, maximum
amplitude = 0.015, probability = 0.3),

TimeStretch (minimum rate = 0.9, maximum rate
1.1, probability 0.3), and PitchShift
(minimum semitone = —2, maximum semitone =
2, probability = 0.3). This dynamic augmentation
introduces greater variability during training,
thereby improving the model’s robustness.

5 Experimental Setup

5.1 FSR Challenge Setting

After the pilot test (stage 1 of the competition),

our submitted model showed notably weaker
performance on the FSR-2025-Media subset,
suggesting that the model was less robust to the
media distribution. To address this issue, we
extended the training data by adding 1.6 hours of
FSR-2025-Media and 7.2 hours of FSR-2025-
Record to the original 40 hours of FSR-2025-
Train. This new configuration is referred to as
FSR-2025-Train-Plus, and served as the baseline
for our final experiments. Building on this setup,

2 https://github.com/iver56/audiomentations
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we designed a series of extended experiments to
examine the impact of additional data sources and
augmentation strategies. Specifically, we trained

three systems before the final submission
deadline:
1.  FSR-2025-Train: The official 40-hour

training set only.

2. FSR-2025-Train-Plus: FSR-2025-
Train+FSR-2025-Record+FSR-2025-
Media with the hour combination described
above.

3.  FSR-2025-Train-Final: An extended

configuration that further incorporates web-
collected corpora and synthetic TTS speech.

All systems were trained with both static and
dynamic data augmentation. The remaining
experimental variants and comparative results are
presented in Section 4.5 (Ablation Study).

In the Pinyin track, we did not incorporate self-
collected corpora or TTS-generated data; instead,
the system relied solely on the organizer-provided
datasets. During the pilot test, training was
conducted exclusively on the organizer-provided
data with both static and dynamic augmentation
strategies applied. In this setting, 20% of the 40-
hour dataset was held out as the validation set,
resulting in 32 hours of original speech data used
for training. In the final stage, due to time
constraints, we combined the 40-hour FSR-2025-
Train dataset with the full 8 hours of FSR-2025-
Record and the complete 2-hour FSR-2025-
Media dataset for final model training, without a
separate validation set; the model from the last
training checkpoint was directly used for
prediction. In both tracks, our final submission
model was based on the Whisper architecture,
fine-tuned at the decoder.

5.2 Model Training Details

For all competition submissions, we fine-tuned
the Whisper-large-v3 model for 10 epochs, with a
learning rate of le-5 following Whisper-LM
(Zuazo et al., 2025) and an accumulated batch
size of 64. For comparison, the LLaMA-Omni
model was trained with a learning rate of 1e-4, an
accumulated batch size of 12, and for 10 epochs



in total. All experiments were conducted on
Ubuntu using an NVIDIA RTX 3090 GPU.

6 Experiment Results

6.1 Pilot Test Results

In the pilot test stage, our system achieved a CER
of 15.92% on the Hanzi track (Figure 2) and an
SER of 20.49% on the Pinyin track (Figure 3) in
the official student division results, ranking 7th
and 3rd, respectively. The pilot test dataset
consists of two subsets: FSR-2025-Record and
FSR-2025-Media. To expand the preliminary data
for the final competition, we constructed a new
test set by combining 0.2 hours from FSR-2025-
Media and 0.8 hours from FSR-2025-Record,
referred to as P-Test. We then evaluated both the
Whisper and LLaMA-Omni models, trained on
the final competition training data, using this 1-
hour Hanzi test set. The results are presented in
Table 2. As shown, under limited training data
conditions, Whisper still clearly outperforms
LLaMA-Omni. We attribute this to the fact that
automatic speech recognition (ASR) is Whisper’s
original pretraining objective, whereas LLaMA-
Omni is designed for more general multimodal
purposes. Consequently, Whisper holds a stronger
advantage in ASR-specific tasks.

6.2 Final Competition Results

In the finals, our system achieved a CER of
15.73% on the Hanzi track and, for the Pinyin
track, a WER of 20.68% and a tone-removed
WER (WER") of 13.82% in the official student
division results, ranking 6th and 4th, respectively.
The rankings and corresponding error rates are
summarized in Table 3.
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Figure 2: CER results and rankings on the Hanzi
track in the pilot test. Our team, labeled as “H,”
participated in the student division.
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Figure 3: SER results and rankings on the Pinyin
track in the pilot test. Our team, labeled as “H,”
participated in the student division.

Model CER
LLaMA-Omni 4.24
Whisper 2.54

Table 2: CER Results on the Hanzi Track of the
P-Test for LLaMA-Omni and Whisper. Both
models were trained under the same data
configuration as FSR-2025-Train-Final

6.3 Ablation Study

We conducted a series of ablation experiments to
examine the contribution of each data source, as
summarized in Table 4. We observed that in the
P-Test, simply adding the FSR-Website-TTS data
led to a performance decline, whereas adding the
FSR-Media-TTS data resulted in improved
performance on the P-Test but showed the
opposite trend on the F-Test. All configurations
employed both static (MUSAN) and dynamic
(Audiomentations) data augmentation, and were
evaluated on the 1-hour P-Test and the F-Test.

Moreover, combining both types of TTS data did
not yield any complementary effect on either test.
We speculate that this discrepancy may be
attributed to the distributional differences
between the two types of TTS data. In contrast,
both Hakka Radio and Hakka E-Learning
contributed significant improvements on the P-
Test and F-Test, with even greater gains when the
two were combined.

Notably, on the F-Test, using only these two
datasets outperformed all other data combinations.
In the Web-collected data experiments, we further



observed that adding Hakka Radio yielded better
performance than adding Hakka E-Learning.
Interestingly, incorporating only Hakka E-
Learning caused a performance drop on the P-
Test but showed improvement on the F-Test.

When both Hakka E-Learning and Hakka Radio
were added together, the performance on the P-
Test was slightly worse than using Hakka Radio
alone, whereas on the F-Test, the two datasets
exhibited complementary effects. We speculate
that this is because the data d istribution of Hakka
E-Learning differs considerably from that of
general media data, while Hakka Radio
demonstrates higher generalizability. This effect
may also be influenced by the higher proportion
of media data in the P-Test compared with the F-
Test.

Hanzi Pinyin
Rank CER Rank | WER | WER"
6 15.73% 4 20.68% | 13.82%

Table 3: In the final results of the Hanzi and
Pinyin tracks, the evaluation metric for the Hanzi
track is CER, while that for the Pinyin track is
WER. WER” denotes the WER evaluated after
tone removal.

CER

P-Test F-Test
FSR-2025-Train 20.10%  27.79%
FSR-2025-Train-Plus 340%  17.54%
+ FSR-Website TTS (1)  3.78%  17.07%
+ FSR-Media TTS (2) 3.29%  17.33%
+ (1) +(2) 3.5% 17.50%
+ Hakka Radio (3) 3.07%  15.04%
+ Hakka E-Learning (4)  3.72%  16.71%
+(3)+ @) 2.55%  14.58%
+(H+Q)+B)+#) 2.54%  15.73%

Table 4: Comparison of training solely on the
original FSR 2025 dataset versus augmenting it
with TTS, Hakka E-Learning, and Hakka Radio,
evaluated on the Hanzi track of 1-hour Pilot test
in the pilot test (P-Test) and Final test set (F-Test)
in terms of CER.

WER

F-Test
FSR-2025-Train 32.60%
FSR-2025-All 20.68%

Table 5: Comparison of the results on the

Final Pinyin Track using the training data

from the preliminary round (FSR-2025-Train)
and the training data used for the Final Pinyin

Track (FSR-2025-All).

For the Pinyin track, we used all FSR-2025-
Media and FSR-2025-Record data in the final
stage, while keeping the remaining
configurations identical to FSR-2025-Train-
Plus. We refer to this training set as FSR-
2025-All. The models trained with both the
pilot test training data and this final training
set were evaluated on the final test set, and the
WER results are shown in Table 5. We
observed a significant improvement after
adding the additional training data,
suggesting that future research could further
enhance model performance by expanding
the amount of Pinyin training data.

7 Conclusion

In this competition, we investigated the use of
various Hakka datasets and conducted
preliminary experiments with existing ASR
models such as Whisper and LLaMA-Omni. Our
results provide initial evidence that Whisper may
outperform LLaMA-Omni for ASR tasks in low-
resource languages. In the finals, we achieved 6th
place in the Hanzi track and 4th place in the
Pinyin track. Moving forward, we plan to explore
integrating data across different dialects and
experimenting with more model combinations,
with the goal of making further progress in low-
resource language research.
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