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Abstract 

 In recent years, large-scale pre-trained 
speech models such as Whisper have been 
widely applied to speech recognition. 
While they achieve strong performance on 
high-resource languages such as English 
and Mandarin, dialects and other low-
resource languages remain challenging due 
to limited data availability. The 
government-led “Formosa Speech in the 
Wild (FSW) project” is an important 
cultural preservation initiative for Hakka, a 
regional dialect, where the development of 
Hakka ASR systems represents a key 
technological milestone. Beyond model 
architecture, data processing and training 
strategies are also critical. In this paper, we 
explore data augmentation techniques for 
Hakka speech, including TTS and 
MUSAN-based approaches, and analyze 
different data combinations by fine-tuning 
the pre-trained Whisper model. We 
participated in the 2025 Hakka FSR ASR 
competition (student track) for the Dapu 
and Zhaoan varieties. In the pilot test, our 
system achieved 7th place in character 
recognition (CER: 15.92) and 3rd place in 
pinyin recognition (SER: 20.49). In the 
official finals, our system ranked 6 in Hanzi 
recognition (CER: 15.73) and 4 in Pinyin 
recognition (SER: 20.68). We believe that 
such data augmentation strategies can 

advance research on Hakka ASR and 
support the long-term preservation of 
Hakka culture. 

Keywords: Hakka, ASR, Low Resource 

1 Introduction 

In recent years, Taiwan has actively invested in 
the preservation and development of national 
languages, and has promoted mother-tongue 
education in primary and secondary schools. In 
addition to Taiwanese (Southern Min), 
Indigenous languages, and the languages of 
Southeast Asian new immigrants, Hakka has also 
been a major focus. To encourage its daily use, 
teaching, and revitalization, the “Formosa Speech 
in the Wild (FSW) project” has launched dialect 
preservation initiatives, including the 
organization of the FSR community competition 
for Hakka automatic speech recognition (ASR). 
This shared task provides timely benchmarks and 
resources, with the second edition held in 2025. 
Hakka belongs to the Sinitic branch and 
encompasses multiple regional phonological 
systems. In particular, the Dapu and Zhaoan 
varieties used in the 2025 competition differ not 
only in segmental systems but also in prosody, 
such as tone and duration. Over the long term, the 
lack of a widely adopted writing system, 
combined with the declining use of Hakka among 
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younger generations, has restricted the 
availability of annotated corpora. From a cultural 
perspective, however, Hakka is central to the 
transmission of Hakka heritage; from a 
technological perspective, ASR can support 
pronunciation assessment and computer-assisted 
language learning. 

We approach Hakka ASR as a data-centric 
transfer learning challenge, emphasizing the 
strategic fine-tuning of the powerful general-
purpose foundation model Whisper-large-v3 
(Radford et al., 2023)  to enhance performance on 
Hakka corpora. We chose Whisper as our 
backbone model due to its verified multilingual 
capability, stability in transfer learning, and 
feasibility on commonly available GPU hardware. 

To address the limited training data for the Dapu 
and Zhaoan dialects, we adopted several 
strategies: 
(i) extending the training set with synthetic speech 
generated by a Text-to-Speech (TTS) system; 
(ii) collecting audio-text pairs from publicly 
available Hakka learning platforms, following the 
procedure described by Chen et al. (2023), to 
construct additional training data for the Dapu and 
Zhaoan dialects (restricted to Hanzi 
transcriptions); 
(iii) incorporating speech and text from Hakka 
radio broadcasts in the same dialects. For data 
augmentation, we first applied MUSAN (Snyder 
et al., 2015) to inject random noise, and further 
employed Audiomentations (Ronny, 2020) to 
introduce dynamic perturbations within each 
training batch, thereby improving model 
robustness. In the 2025 FSR Hakka ASR 
competition (student track), our system achieved 
7th place in Hanzi recognition (Character Error 
Rate, CER: 15.92) and 3rd place in Pinyin 
recognition (Syllable Error Rate, SER: 20.49) 
during the pilot test. In the official finals, our 
system ranked 6th in Hanzi recognition (CER: 
15.73) and 4th in Pinyin recognition (Word Error 
Rate, WER: 20.68). 

The following sections describe in detail our 
strategy for leveraging Whisper, the methods used 
for data augmentation and corpus expansion, and 
the full set of experimental results, highlighting 
the effectiveness and limitations of each approach. 
Finally, we discuss the broader implications of 
our findings for speech technology, especially in 
the context of preserving and revitalizing cultural 

languages. Through this study, we aim to provide 
methodological insights and practical tools for the 
future development of Hakka ASR and other low-
resource language technologies. 

2 Model Architecture 

We use the fine-tuned Whisper model as our final 
submission to the competition. In addition, we 
perform fine-tuning on LLaMA-Omni for 
comparison. The details and descriptions of both 
models are presented below. 

2.1    Whisper 

 In this competition, we adopt Whisper as the 
backbone model, following the approach of Lu et 
al. (2023). Whisper is an encoder-decoder ASR 
model pretrained on large-scale speech-text 
corpora. Our fine-tuning strategy focuses 
specifically on the decoder for the following 
reasons: 

(i) We aim to fully leverage the pretrained 
knowledge on the encoder side. We assume that 
Whisper’s encoder, which is responsible for 
encoding acoustic information, has strong 
generalization ability across different languages. 
Therefore, rather than fine-tuning the encoder on 
a small amount of target data—which might risk 
degrading this generalization—we retain its 
pretrained capacity as much as possible. 

(ii) We regard the decoder as the component that 
adapts to the target language. From the 
perspective of a traditional language model, the 
decoder primarily handles the mapping from 
acoustic features to linguistic representations. 
Since this process must reflect the characteristics 
of the target language (e.g., Hanzi or Pinyin 
language models), fine-tuning the decoder is a 
reasonable and effective choice. 

2.2    LLaMA-Omni 

With the recent rise of large audio–language 
models (LALMs), such as those proposed by 
Zhang et al. (2023) and Chu et al. (2024), we 
conducted additional experiments using the  
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LLaMA-Omni model (Fang et al., 2024). The 
original architecture employs an 8B large 
language model; however, in our implementation, 
we replace it with a smaller 1B-parameter 
LLaMA (Dubey et al., 2025) variant to better 
accommodate limited GPU resources. The 
architecture integrates the Whisper-large-v3 
encoder, and a linear adapter is inserted between 
the encoder and the LLM to align their feature 
dimensions by projecting the encoder output into 
the LLM’s embedding space.  

For fine-tuning, we follow a similar strategy by 
freezing the Whisper encoder to preserve its 
pretrained capacity for extracting meaningful 
speech representations. The adapter and LLM 
components are then trained jointly, enabling the 
model to adapt to the downstream task. This setup 
allows us to leverage the robust acoustic 
representations from the frozen encoder while 
focusing computational resources on adapting the 
modality-bridging adapter and the large language 
model to the target language domain. This 
configuration serves as a comparative baseline 
against our Whisper-only fine-tuning approach. 

3 Data Sources 

We first remove silence segments from all speech 
data to avoid adverse effects on model training. In 

addition, all corpora—including both the 
organizer-provided data and our self-collected 
resources—are resampled to 16 kHz to ensure 
consistency with the model requirements. Below, 
we describe our data augmentation and 
processing methods, as well as the training 
mechanism for data utilization. The overall 
pipeline of our data processing and model fine-
tuning framework is illustrated in Figure 1. A 
detailed summary of all datasets used in this work 
is provided in Table 1. 

3.1    FSR Hakka Challenge 

As summarized in Table 1, the datasets used in 
this study can be grouped into three categories:(i) 
official FSR corpora released by the organizers, 
(ii) web collected resources, and (iii) TTS-
generated synthetic speech. These corpora 
collectively provide complementary coverage of 
read and spontaneous Hakka speech, forming the 
basis for the experiments in Section 4.  

Source Dataset Name Usage Duration(hr) Description 

Organizer 
provided 

FSR-2025-Train Train set 62.0 Official training corpus 
released by competition 
organizers. 

 
 

FSR-2025-Record Train set 7.2 Pilot-test subset 
Test set 0.8 

 FSR-2025-Media Train set 1.6 Pilot-test subset 
Eval set 0.2 
Test set 0.2 

Web collected  Hakka Radio Train set 11.0 Transcribed broadcast speech 

 Hakka E-Learning Train set 16.0 Educational reading material 

TTS generated  FSR-Website-TTS Train set 335.0 Synthetic speech from VITS 
trained on FSR-2025-Train. 

 FSR-Media-TTS Train set 8.0 Synthetic speech from VITS 
trained on FSR-2025-Train 

Competition 
test sets 

P-test Test set 1.0 1 hr subset (0.8 Record + 0.2 
Media) 

 F-test Test set 10.0 Final competition set. 

Table 1  Summary of all speech datasets used in this study 
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Figure 1: Overall architecture of the AS-SLAM 
system for Hakka ASR. 

3.2    Web-Collected 

We extracted speech-text pairs for both the Dapu 
and Zhaoan dialects from two publicly available 
online resources: Hakka E-learning and Hakka 
Radio. 

The duration and usage of the web-collected 
datasets are summarized in Table 1. Specifically, 
The Hakka Radio corpus comprises 
approximately 9 hours of Dapu speech and 2 
hours of Zhaoan speech, collected from broadcast 
programs in which native speakers discuss daily 
topics in a spontaneous conversational style. 

These recordings exhibit diverse acoustic 
environments, speaker variations, and natural 
prosodic patterns. Owing to their broadcast nature, 
we hypothesize that the distribution of Hakka 
Radio more closely resembles that of the FSR-
2025-Media subset. In contrast, the Hakka E-
Learning corpus includes 8 hours each for Dapu 
and Zhaoan, originating from educational 
materials on the official Hakka E-learning 
platform. The utterances are primarily short, card-
style sentences in which speakers read isolated 
words or short phrases aloud. Because of its clear 
articulation and relatively clean recording 
conditions, their corpus shares greater similarity 
with the FSR-2025-Record subset. Since the 
transcripts of both datasets are in Hanzi, they are 
used exclusively for the Hanzi track of the 
competition. 

 
1 https://hakkadict.moe.edu.tw/resource_download/ 

3.3    TTS-Generated 

We adopt the Variational Inference Text-to-
Speech (VITS) model (Kim et al., 2021) for 
speech synthesis, following the approach of Chen 
et al. (2023). During model training, we use both 
the official training data provided by the 
organizers and our self-collected resources. 
Separate TTS models are trained for the Dapu and 
Zhaoan dialects. For text prompts, we collect 
150,000 example sentences from Hakka 
dictionary online published by the Hakka Affairs 
Council1. As summarized in Table 1, the official 
FSR-2025-Train corpus includes 123 speakers 
across both dialects and genders. From this pool, 
five speakers are randomly selected, and each 
generates 67 hours of speech, resulting in a total 
of 335 hours of synthetic data (denoted as FSR-
Website-TTS). In addition, to enhance the 
coverage of media-style speech, we reuse the 
previously trained TTS models to perform speech 
synthesis using the transcriptions from the FSR-
2025-Media dataset (1.6 hours of text). For each 
dialect, five speakers are randomly sampled, and 
each generates 1.6 hours of speech, resulting in a 
total of 8 hours of synthetic data (denoted as FSR-
Media-TTS). Due to time constraints, only Hanzi 
transcriptions were used for speech synthesis. 

4 Data Augmentation 

We divide our data augmentation into two 
strategies—static and dynamic—following the 
two-stage approach proposed by Bhat et al. 
(2025), which are described as follows. 

The overall workflow of both augmentation 
stages and their integration with the Whisper fine-
tuning pipeline is illustrated in Figure 1. As 
shown in the figure, all audio sources—including 
competition data, TTS-generated data, and web-
collected corpora—first pass through a static 
augmentation stage (MUSAN), followed by 
dynamic augmentations applied online during 
model training.  

These two levels of augmentation jointly 
enhanced the model’s robustness to noise, 
channel, variation, and acoustic mismatch across 
domains. 
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4.1    Static Data Augmentation 

We employ the MUSAN (Snyder et al., 2015) 
toolkit, MetricAug (Wu et al., 2023), and the  
method proposed by Ko et al. (2023) for data 
augmentation, adding noise to clean speech 
before the training stage. The noise level is 
controlled by a randomly sampled signal-to-noise 
ratio (SNR) between 0 and 15 dB, following the 
configuration described in Pligin-SE (Chen et al., 
2024). This static stage serves as the offline 
augmentation block shown in Figure 1 , ensuring 
that each input waveform exhibits realistic 
acoustic diversity prior to entering the dynamic 
augmentation pipeline. 

4.2    Dynamic Data Augmentation 

We apply the Audiomentations 2  toolkit for 
dynamic data augmentation. Unlike static data 
augmentation, this method is integrated directly 
into the training process. Before each sample is 
fed into the model, the following transformations 
are independently applied, following the 
configuration described in Dynamic Mixing 
(Choi et al., 2022) and Aligned Data 
Augmentation (Lam et al., 2021): GaussianNoise 
(minimum amplitude = 0.001, maximum 
amplitude = 0.015, probability = 0.3), 
TimeStretch (minimum rate = 0.9, maximum rate 
= 1.1, probability = 0.3), and PitchShift 
(minimum semitone = –2, maximum semitone = 
2, probability = 0.3). This dynamic augmentation 
introduces greater variability during training, 
thereby improving the model’s robustness. 

5 Experimental Setup 

5.1    FSR Challenge Setting 

After the pilot test (stage 1 of the competition), 
our submitted model showed notably weaker 
performance on the FSR-2025-Media subset, 
suggesting that the model was less robust to the 
media distribution. To address this issue, we 
extended the training data by adding 1.6 hours of 
FSR-2025-Media and 7.2 hours of FSR-2025-
Record to the original 40 hours of FSR-2025-
Train. This new configuration is referred to as 
FSR-2025-Train-Plus, and served as the baseline 
for our final experiments. Building on this setup, 

 
2 https://github.com/iver56/audiomentations 

we designed a series of extended experiments to 
examine the impact of additional data sources and 
augmentation strategies. Specifically, we trained 
three systems before the final submission 
deadline: 
 
1. FSR-2025-Train: The official 40-hour 

training set only.  
2. FSR-2025-Train-Plus: FSR-2025-

Train+FSR-2025-Record+FSR-2025-
Media with the hour combination described 
above. 

3. FSR-2025-Train-Final: An extended 
configuration that further incorporates web-
collected corpora and synthetic TTS speech. 

All systems were trained with both static and 
dynamic data augmentation. The remaining 
experimental variants and comparative results are 
presented in Section 4.5 (Ablation Study). 

In the Pinyin track, we did not incorporate self-
collected corpora or TTS-generated data; instead, 
the system relied solely on the organizer-provided 
datasets. During the pilot test, training was 
conducted exclusively on the organizer-provided 
data with both static and dynamic augmentation 
strategies applied. In this setting, 20% of the 40-
hour dataset was held out as the validation set, 
resulting in 32 hours of original speech data used 
for training. In the final stage, due to time 
constraints, we combined the 40-hour FSR-2025-
Train dataset with the full 8 hours of FSR-2025-
Record and the complete 2-hour FSR-2025-
Media dataset for final model training, without a 
separate validation set; the model from the last 
training checkpoint was directly used for 
prediction. In both tracks, our final submission 
model was based on the Whisper architecture, 
fine-tuned at the decoder. 

5.2    Model Training Details 

For all competition submissions, we fine-tuned 
the Whisper-large-v3 model for 10 epochs, with a 
learning rate of 1e-5 following Whisper-LM 
(Zuazo et al., 2025) and an accumulated batch 
size of 64. For comparison, the LLaMA-Omni 
model was trained with a learning rate of 1e-4, an 
accumulated batch size of 12, and for 10 epochs 
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in total. All experiments were conducted on 
Ubuntu using an NVIDIA RTX 3090 GPU. 

6 Experiment Results  

6.1    Pilot Test Results   

In the pilot test stage, our system achieved a CER 
of 15.92% on the Hanzi track (Figure 2) and an 
SER of 20.49% on the Pinyin track (Figure 3) in 
the official student division results, ranking 7th 
and 3rd, respectively. The pilot test dataset 
consists of two subsets: FSR-2025-Record and 
FSR-2025-Media. To expand the preliminary data 
for the final competition, we constructed a new 
test set by combining 0.2 hours from FSR-2025-
Media and 0.8 hours from FSR-2025-Record, 
referred to as P-Test. We then evaluated both the 
Whisper and LLaMA-Omni models, trained on 
the final competition training data, using this 1-
hour Hanzi test set. The results are presented in 
Table 2. As shown, under limited training data 
conditions, Whisper still clearly outperforms 
LLaMA-Omni. We attribute this to the fact that 
automatic speech recognition (ASR) is Whisper’s 
original pretraining objective, whereas LLaMA-
Omni is designed for more general multimodal 
purposes. Consequently, Whisper holds a stronger 
advantage in ASR-specific tasks. 

6.2    Final Competition Results 

In the finals, our system achieved a CER of 
15.73% on the Hanzi track and, for the Pinyin 
track, a WER of 20.68% and a tone-removed 
WER (WER^) of 13.82% in the official student 
division results, ranking 6th and 4th, respectively. 
The rankings and corresponding error rates are 
summarized in Table 3. 

 

Figure 2: CER results and rankings on the Hanzi 
track in the pilot test. Our team, labeled as “H,” 
participated in the student division. 

 

 

Figure 3: SER results and rankings on the Pinyin 
track in the pilot test. Our team, labeled as “H,” 
participated in the student division. 

 

Model CER 
LLaMA-Omni 4.24 

Whisper 2.54 

Table 2: CER Results on the Hanzi Track of the 
P-Test for LLaMA-Omni and Whisper. Both 
models were trained under the same data 
configuration as FSR-2025-Train-Final 

6.3    Ablation Study 

We conducted a series of ablation experiments to 
examine the contribution of each data source, as 
summarized in Table 4. We observed that in the 
P-Test, simply adding the FSR-Website-TTS data 
led to a performance decline, whereas adding the 
FSR-Media-TTS data resulted in improved 
performance on the P-Test but showed the 
opposite trend on the F-Test. All configurations 
employed both static (MUSAN) and dynamic 
(Audiomentations) data augmentation, and were 
evaluated on the 1-hour P-Test and the F-Test. 

Moreover, combining both types of TTS data did 
not yield any complementary effect on either test. 
We speculate that this discrepancy may be 
attributed to the distributional differences 
between the two types of TTS data. In contrast, 
both Hakka Radio and Hakka E-Learning 
contributed significant improvements on the P-
Test and F-Test, with even greater gains when the 
two were combined. 

Notably, on the F-Test, using only these two 
datasets outperformed all other data combinations. 
In the Web-collected data experiments, we further 
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observed that adding Hakka Radio yielded better 
performance than adding Hakka E-Learning. 
Interestingly, incorporating only Hakka E-
Learning caused a performance drop on the P-
Test but showed improvement on the F-Test. 

When both Hakka E-Learning and Hakka Radio 
were added together, the performance on the P-
Test was slightly worse than using Hakka Radio 
alone, whereas on the F-Test, the two datasets 
exhibited complementary effects. We speculate 
that this is because the data d istribution of Hakka 
E-Learning differs considerably from that of 
general media data, while Hakka Radio 
demonstrates higher generalizability. This effect 
may also be influenced by the higher proportion 
of media data in the P-Test compared with the F-
Test. 

Hanzi Pinyin 
Rank CER Rank WER WER^ 

6 15.73% 4 20.68% 13.82% 

Table 3: In the final results of the Hanzi and 
Pinyin tracks, the evaluation metric for the Hanzi 
track is CER, while that for the Pinyin track is 
WER. WER^ denotes the WER evaluated after 
tone removal. 

 CER 
P-Test F-Test 

FSR-2025-Train 20.10% 27.79% 
FSR-2025-Train-Plus 3.40% 17.54% 
+ FSR-Website TTS (1) 3.78% 17.07% 
+ FSR-Media TTS (2) 3.29% 17.33% 
+ (1) + (2) 3.5% 17.50% 
+ Hakka Radio (3) 3.07% 15.04% 
+ Hakka E-Learning (4) 3.72% 16.71% 
+ (3) + (4)  2.55% 14.58% 
+ (1) + (2) + (3) + (4) 2.54% 15.73% 

Table 4: Comparison of training solely on the 
original FSR 2025 dataset versus augmenting it 
with TTS, Hakka E-Learning, and Hakka Radio, 
evaluated on the Hanzi track of 1-hour Pilot test 
in the pilot test (P-Test) and Final test set (F-Test) 
in terms of CER. 

 

 

 

 WER 
F-Test 

FSR-2025-Train 32.60% 
FSR-2025-All 20.68% 

Table 5: Comparison of the results on the 
Final Pinyin Track using the training data 
from the preliminary round (FSR-2025-Train) 
and the training data used for the Final Pinyin 
Track (FSR-2025-All). 

For the Pinyin track, we used all FSR-2025-
Media and FSR-2025-Record data in the final 
stage, while keeping the remaining 
configurations identical to FSR-2025-Train-
Plus. We refer to this training set as FSR-
2025-All. The models trained with both the 
pilot test training data and this final training 
set were evaluated on the final test set, and the 
WER results are shown in Table 5. We 
observed a significant improvement after 
adding the additional training data, 
suggesting that future research could further 
enhance model performance by expanding 
the amount of Pinyin training data. 

7 Conclusion 

In this competition, we investigated the use of 
various Hakka datasets and conducted 
preliminary experiments with existing ASR 
models such as Whisper and LLaMA-Omni. Our 
results provide initial evidence that Whisper may 
outperform LLaMA-Omni for ASR tasks in low-
resource languages. In the finals, we achieved 6th 
place in the Hanzi track and 4th place in the 
Pinyin track. Moving forward, we plan to explore 
integrating data across different dialects and 
experimenting with more model combinations, 
with the goal of making further progress in low-
resource language research. 
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