A* decoding - Fast, precise and diverse decoding for LLMs
Samsung R&D Institute Poland participation in WMT2025

Team Name: SRPOL

Adam Dobrowolski, Pawel Przewlocki, Dawid Siwicki
Samsung R&D Institute, Warsaw, Poland

Abstract

This work presents an innovative decoding ap-
proach utilizing the A* algorithm, which gen-
erates a diverse and precise set of translation
hypotheses. Subsequent reranking through the
Noisy Channel Model Reranking and Qual-
ity Estimation selects the best among these
diverse hypotheses, leading to a significant
improvement in translation quality. This ap-
proach achieves up to a 0.5-point reduction in
the MetricX-24 score and a 1.5-point increase
in the COMET score.

The A* decoding algorithm is model-agnostic
and could be applied to decoding in LLMs as
well as classic transformer architectures. The
experiment shows that by using freely avail-
able open source MT models, it is possible to
achieve translation quality comparable to the
best online translators and LLMs using a single
32GB GPU card.

1 Introduction

The final stage of inference in language models
is decoding, which involves generating text based
on calculated token probabilities. The most com-
monly used approach is autoregressive decoding,
which generates tokens sequentially based on the
source text and the text produced thus far. There
are three primary strategies for autoregressive de-
coding: greedy, beam, and sampling. Each of them
has its flaws that A* resolves.

2 Decoding Strategies

Greedy Decoding selects the most probable token
at each step, prioritizing speed and simplicity but
often producing suboptimal results due to its lim-
ited exploration of alternative paths.

Sampling introduces randomness by selecting
tokens based on their probability distribution, but
the generated hypotheses can be overly random,
resulting in translations that are not always optimal.

{a.dobrowols2@samsung.com, p.przewlocki@partner.samsung.com, d.siwicki@samsung.com}

Beam Search maintains multiple high-
probability sequences (beams) simultaneously,
enhancing output quality at a modest compu-
tational cost proportional to the beam width.
This algorithm has been widely used in machine
translation.

Recent advances in large language models
(LLMs) have demonstrated their superiority over
traditional encoder-decoder transformers (Vaswani
et al., 2017). However, because of their primary
purpose, LLMs are designed for rapid text gen-
eration and not for quality-oriented beam search.
Beam search in LLMs takes much more time than
in classic transformers. For example, from our
experiments, the beam search using vLLM' on
EuroLLM-9B (Martins et al., 2025) takes about
30 seconds to decode with beam of width 10 for
just one sentence. Within the same time, we can
use sampling to generate as many as 800 diverse
hypotheses, which later assessed by QE give great
improvement over greedy decoding or beam search.
In the following, we propose a novel A* decod-
ing algorithm for LLMs that combines the speed
of beam search in classic transformers with the
diversity of sampling.

3 A¥* Decoding

Let’s consider decoding as the process of searching
for the optimal path within a tree of all possible
sentences generated by a model, where the chosen
path represents the best translation of the source
sentence. Typically, there are no clear criteria for
evaluating the quality of the generated sequence,
so we must rely on proxy metrics derived from
available data to assess its quality. One of the most
effective and straightforward proxy metrics is the
average probability of all tokens generated. This
metric guides the algorithm to select the most prob-
able token at each step of the output generation

"https://docs.vlim.ai/

219

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 219-223
November 8-9, 2025. ©2025 Association for Computational Linguistics

def a_star_decoding(source, max_cands,
queue = ReversedPriorityQueue ()
queue.put ((0, [1))
results = []
for iteration in range(max_cands):
if queue.empty(): break
old_f_score, prefix = queue.pop()

new_trn = LLM.generate(source,

results.append(new_trn)

if iteration == 0:
def_f_score =

for idx,
idx += len(prefix)

prefix)

hope_level):

sum(new_trn. tokens) / len(new_trn. tokens)

token in enumerate(new_trn.tokens[len(prefix):]1):

for alt_token in token.alternative_tokens:

g_score =
h_score
f_score =
if f_score > def_f_score:
queue.put((f_score,
return results

sum(new_trn.tokens[:idx]) + alt_token.logprob
sum(new_trn. tokens[idx+1:])
(g_score + h_score) / len(new_trn.tokens) + hope_level

new_trn.tokens[:idx] + [alt_token]))

Listing 1: Python-like pseudocode of the A* decoding

process. The simplest approach, known as greedy
decoding, follows this principle. However, the re-
sults of greedy decoding may be suboptimal, as it
overlooks many potential paths. In contrast, A* de-
coding allows the algorithm to explore beyond just
the most probable next token, selecting tokens that
offer the potential for discovering a more probable
path by the end of the process. A similar concept
has already been explored for Statistical Machine
Translation (SMT) with long paragraphs (Och et al.,
2001).

3.1 A%* algorithm

A* algorithm uses priority queue to explore graph
nodes, prioritizing those with the lowest estimated
total cost.

For each node n, it computes:

* g(n): exact cost from the start node to n.

* h(n): heuristic estimate of the cost from n to the
end of sentence.

* f(n) = g(n) + h(n): estimated total cost of the
path through n.

3.2 A* decoding description

We propose the following adaptation of the A* algo-
rithm to decoding in LLMs. The probability of the
remaining sequence is the probability of the gener-
ated token (as in beam-search) plus probability of
the sequence following the new token. Assuming
that the remaining sequence could have a slightly
higher probability than the base sequence, we can

estimate the total probability of a new path. This
is done by adding the probability of the new to-
ken, adjusted by a small constant to account for the
potential increase of total probability.

The initial step of the algorithm is generation of
the default greedy translation for the source sen-
tence. We then enhance this baseline by employing
the A* algorithm for further exploration. For each
token generated, we select alternative tokens at its
position and calculate the estimated total cost, f(n),
as outlined below:

* g(n) (actual cost) - normalized logarithm proba-
bility of a prefix with alternative token.

* h(n) (estimate cost) - normalized logarithm prob-
ability of the default suffix plus some constant
“hope_level” that assumes that the actual proba-
bility of the rest of sentence may be bigger than
the default. The "hope_level" should be chosen
experimentally. High enough to ensure that h(n)
remains admissible (does not overestimate the ac-
tual cost), but not too high to avoid considering
highly improbable alternative tokens.

The pseudocode for the algorithm is presented
in Listing 1.

220

MetricX-24 values for various algorithms and different number of hypotheses

10 hyps 20 hyps 50 hyps 100 hyps 200 hyps
! P S |
---------------------------- L]
----- - puprparrreey XUUR o it
. o mamE T
.____’__-_:u.--:"l:‘j' e °
4.9 L RS
o
______ D
S —— = e————aas=———— emmmmm e e e -
e O PROPRRPR PRI Prrrrrrrrrsssatinaatannaananainnn)
__________________ TR
e .
R
--------------- e i T o T,

5.2

—w Greedy Beam
«+-9-- Sample -+#-- Sample + Reranking

--= A% === A* + Reranking

Beam + Reranking

«+-9-- Sample + Reranking + QE (9B)
=--= A* + Reranking + QE

Beam +Reranking + QE
«+-9-- Sample + Reranking + QE (22B)

Figure 1: Comparison of A* with other algorithms for the English-to-Czech direction.

Method 10 hyps 20 hyps 50 hyps 100 hyps 200 hyps time/200hyps
Greedy 5.2064 5.2064 5.2064 5.2064 5.2064 0.031
Beam 5.0677 5.0740 5.1088 3.330
Beam + Reranking 5.0492 5.0021 5.0279 3.330
Beam + Reranking + QE 49586 4.8920 4.8555 3.330
Sample 5.1992 52149 5.2077 5.2146 5.2363 0.040
Sample + Reranking 5.1303 5.0962 5.0709 5.0539 5.0493 0.042
Sample + Reranking + QE (9B) 4.9233 4.8545 4.7894 4.7604 4.7151 0.047
Sample + Reranking + QE (22B) 4.8678 4.8288 4.7919 4.7660 4.7410 0.047
A* 5.1722 5.1468 5.1590 5.1494 5.1612 0.024
A* + Reranking 5.0439 5.0132 5.0111 4.9811 5.0028 0.025
A* + Reranking + QE 4.8889 48106 4.7601 4.7110 4.7049 0.029

Table 1: Comparison of MetricX-24 scores on the WMT24++ test set for the English-to-Czech translation direction.

4 Reranking

Following the generation of a set of translation
hypotheses using the above described algorithm,
we select the optimal hypothesis through a mod-
ified Noisy Channel Model Reranking approach,
as described by (Yee et al., 2019). This reranking
method enhances machine translation by reorder-
ing candidate translations during the decoding pro-
cess. It integrates three components: a direct trans-
lation model, P(T|S), which predicts the target
sentence ' given the source sentence S; a chan-
nel model, P(S|T'), which assesses the likelihood
of the source sentence given the target; and a lan-
guage model, P(7T'), which evaluates the fluency
of the target sentence. The algorithm ranks can-
didates by computing a weighted combination of
these probabilities, ensuring the selection of the
most accurate and fluent translation. The algorithm
scores candidates using a weighted combination of
these probabilities:

* S(T'|S)=P(T|S)+Alog P(S|T)+A2log P(T)

where A\; and A9 are tunable weights. Top candi-
dates from the direct model are reranked based on
this score, prioritizing translations that balance fi-
delity to the source and fluency in the target. For
our submission in WMT2025 we applied the fol-
lowing scoring:

* P(T|S) - calculated by weighted sum of proba-
bilities of EuroLLM-9B, NLLB-3.3 (Team et al.,
2022) combined with Unbabel/comet wmt23-
cometkiwi-da-x1 score. (Rei et al., 2020)

* P(S|T) - calculated by NLLB-3.3.

* P(T) - not used - for compliance with constrained
path.

4.1 Hallucination detection

Before reranking, we remove hypotheses that ap-
pear to be outliers or hallucinations. For each
source sentence, we calculate the standard devia-
tion of the probability scores across all hypotheses
for each scoring model. Hypotheses with scores
below the mean minus one standard deviation are
filtered out.

221

WMT24++ Metricx24 scores

24

2.6

2.8

3.

1Y

IS

3.

@

w

'S

a,

9

4.

IS

a,

@

4.

w

5.

19

B

5.

@

EN-DE EN-ZH CS-UK

H GPT-4 B Gemini-1.5-Pro ¥ Claude-3.5

EN-IA

EN-RU EN-UK EN-CS

Unbabel-Tower708 M EuroLLM-9B

Figure 2: Comparison of presented solution (green) to leading LLMs.

5 Results

5.1 Comparison with different decodings

The chart on Figure 1 presents the quality of var-
ious algorithms across different number of gen-
erted hypotheses. The Y-axis represents reference-
based MetricX-24 scores (Juraska et al., 2024) on
wmt24++ testset (Deutsch et al., 2025) for the
English-to-Czech translation direction. The X-axis
indicates the number of hypotheses generated per
source sentence. Table 1 presents exact values for
the chart. The values for sampling vary with each
run. The values in the table represent the mean of
multiple runs. Performance times were measured
in seconds on a single A100-80GB GPU using the
vLLM framework on EuroLLM-9B. 80GB of GPU
memory is not necessary. We have successfully run
the above tests on A100-40GB and V100-32GB
with slower decoding time, but the same quality.
The baseline performance, established through
greedy decoding, achieves a score of 5.2064. Pure
beam search, utilizing a beam width of only 10
hypotheses, yields a better score of 5.0667, though
it requires approximately 30 seconds to decode a
single sentence. Despite its computational com-
plexity, beam search remains the best algorithm for
decoding without reranking. The introduction of
reranking shifts the advantage to the A* algorithm,
which delivers an improved score of 5.0062, repre-
senting a 0.2-point improvement over the baseline.
Incorporating Quality Estimation (QE) further en-
hances performance, boosting results by approxi-
mately 0.2 to 0.3 points above the reranked results.

In this scenario, A* remains the top-performing al-
gorithm, achieving the best score of 4.7049. When
all techniques are combined, the overall improve-
ment ranges from approximately 0.2 to 0.5 points
on the reference-based MetricX-24 compared to
the baseline.

It may seem surprising that A* decoding requires
less time than sampling for a single source sentence,
but this number comes from total time divided by
maximum number of hypotheses - 200. Sampling
always generates a fixed number of hypotheses,
often including duplicates. In contrast, A* decod-
ing halts once it can no longer identify distinct
hypotheses, especially for short segments, result-
ing in a shorter total processing time compared to
sampling. E.g. for beam of 200 A* decoding on
WMT24++ generates only about 100 hypotheses
on average.

5.2 Comparison with other LL.Ms

Figure 2 presents automatic scores for translations
for different directions, generated using several
leading LLMs: Claude?, Gemini*, GPT*, Unbabel-
Tower (Alves et al., 2024). Values are reference-
based scores of MetricX-24. While these scores do
not perfectly reflect translation quality, they offer
a general indication of performance. The table
illustrates that the translation quality achieved by
the method described in this paper is comparable
to that of the leading LLMs.

Zhttps://claude.ai/
3https://gemini.google.com/
“https://chatgpt.com/

222

6 Conclusions and future work

We introduced a novel, high-speed decoding algo-
rithm (A*) that generates hypotheses significantly
faster than beam search in large language models
(LLMs). This algorithm is adaptable to any lan-
guage model. The application of Noisy Channel
Reranking enhances the quality of diverse gener-
ated candidates by up to 0.2 points on the MetricX-
24 scale. Further application of Quality Estimation
(QE) reranking yields an additional improvement
of another 0.2 to 0.3 points.

A* decoding algorithm flexibility enables a bal-
ance between quality and speed. Due to its effi-
ciency and adaptability for any language model,
this method has potential for numerous practical
applications.

The proposed solution demonstrates high qual-
ity of EuroLLM models. The final results re-
flect a significant improvement over EuroLLM-9B
translations, with a reduction of up to 0.5 points
in MetricX-24 and an increase of 1.5 points in
COMET, achieving quality comparable to leading
large language models, even for non-European lan-
guages.

Due to time constraints prior to the WMT25
workshop, we were unable to explore post-
processing techniques or context-aware multi-
sentence decoding. The results submitted represent
the unrefined output of the method described in this
paper. A* decoding is a new idea, and we intend to
refine it through further research. The results pre-
sented at WMT?25 could be enhanced by leveraging
other LLMs models as a base model, incorporating
alternative Quality Estimation methods, or utilizing
improved language models for reranking.

7 Acknowledgements

We would like to express our gratitude to the en-
tire Machine Translation team at Samsung R&D
Poland for their support. Special thanks go to
Marcin Szymanski for valuable reviews. We also
acknowledge the management of Samsung Poland
for their support in preparing this work.

References

Duarte M. Alves, José Pombal, Nuno M. Guerreiro, Pe-
dro H. Martins, Jodo Alves, Amin Farajian, Ben Pe-
ters, Ricardo Rei, Patrick Fernandes, Sweta Agrawal,
Pierre Colombo, José G. C. de Souza, and André F. T.
Martins. 2024. Tower: An open multilingual large
language model for translation-related tasks.

Daniel Deutsch, Eleftheria Briakou, Isaac Caswell,
Mara Finkelstein, Rebecca Galor, Juraj Juraska, Geza
Kovacs, Alison Lui, Ricardo Rei, Jason Riesa, Shruti
Rijhwani, Parker Riley, Elizabeth Salesky, Firas Tra-
belsi, Stephanie Winkler, Biao Zhang, and Markus
Freitag. 2025. Wmt24++: Expanding the language
coverage of wmt24 to 55 languages dialects.

Juraj Juraska, Daniel Deutsch, Mara Finkelstein, and
Markus Freitag. 2024. MetricX-24: The Google
submission to the WMT 2024 metrics shared task.
In Proceedings of the Ninth Conference on Machine
Translation, pages 492-504, Miami, Florida, USA.
Association for Computational Linguistics.

Pedro Henrique Martins, Jodo Alves, Patrick Fernandes,
Nuno M. Guerreiro, Ricardo Rei, Amin Farajian, Ma-
teusz Klimaszewski, Duarte M. Alves, José Pombal,
Nicolas Boizard, Manuel Faysse, Pierre Colombo,
Frangois Yvon, Barry Haddow, José G. C. de Souza,
Alexandra Birch, and André F. T. Martins. 2025.
Eurollm-9b: Technical report.

Franz Josef Och, Nicola Ueffing, and Hermann Ney.
2001. An efficient A* search algorithm for statisti-
cal machine translation. In Proceedings of the ACL
2001 Workshop on Data-Driven Methods in Machine
Translation.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. Comet: A neural framework for mt
evaluation.

NLLB Team, Marta R. Costa-jussa, James Cross, Onur
Celebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzman, Philipp
Koehn, Alexandre Mourachko, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, and Jeff Wang.
2022. No language left behind: Scaling human-
centered machine translation.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Kyra Yee, Nathan Ng, Yann N. Dauphin, and Michael
Auli. 2019. Simple and effective noisy channel mod-
eling for neural machine translation.

223

http://arxiv.org/abs/2402.17733
http://arxiv.org/abs/2402.17733
http://arxiv.org/abs/2502.12404
http://arxiv.org/abs/2502.12404
https://doi.org/10.18653/v1/2024.wmt-1.35
https://doi.org/10.18653/v1/2024.wmt-1.35
http://arxiv.org/abs/2506.04079
https://aclanthology.org/W01-1408/
https://aclanthology.org/W01-1408/
http://arxiv.org/abs/2009.09025
http://arxiv.org/abs/2009.09025
http://arxiv.org/abs/2207.04672
http://arxiv.org/abs/2207.04672
http://arxiv.org/abs/1908.05731
http://arxiv.org/abs/1908.05731

