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Abstract
This paper describes the joint effort of Phrase
a.s. and Charles University’s Institute of For-
mal and Applied Linguistics (CUNI/UFAL) on
the WMT25 Automated Translation Quality
Evaluation Systems Shared Task. Both teams
participated both in a collaborative and compet-
itive manner, i.e. they each submitted a system
of their own as well as a contrastive joint sys-
tem ensemble. In Task 1, we show that such an
ensembling—if chosen in a clever way—can
lead to a performance boost. We present the
analysis of various kinds of systems comprising
both “traditional” NN-based approach, as well
as different flavours of LLMs—off-the-shelf
commercial models, their fine-tuned versions,
but also in-house, custom-trained alternative
models. In Tasks 2 and 3 we show Phrase’s
approach to tackling the tasks via various GPT
models: Error Span Annotation via the com-
plete MQM solution using non-reasoning mod-
els (including fine-tuned versions) in Task 2,
and using reasoning models in Task 3.

1 Introduction

Machine translation (MT) evaluation has evolved
rapidly in recent years, driven by the dual rise of
large language models (LLMs) and specialised neu-
ral quality estimation (QE) architectures. Shared
tasks, such as the WMT MT Evaluation campaign,
provide a rigorous and reproducible framework for
assessing advances in automated evaluation. The
WMT25 MT Evaluation Task continues this tradi-
tion, offering a benchmark for comparing diverse
approaches across multiple subtasks, from system-
level quality prediction to fine-grained error anno-
tation.

In this paper, we present a joint study by Phrase
a.s. and Charles University’s Institute of Formal
and Applied Linguistics (CUNI/UFAL), combining

independent research streams with collaborative
experimentation. Both teams participated in Task 1,
each submitting their own primary and secondary
systems, as well as a contrastive joint ensemble
in Task 1. This setting allowed us to examine not
only the relative strengths of distinct modelling
paradigms but also the potential synergies of cross-
team integration. Phrase also participated in Task 2
and Task 3.

Our contributions are threefold. First, we in-
vestigate complementary modelling strategies for
Task 1, including NN-based regression models
trained on large-scale MQM-style data (multidi-
mensional quality metrics, Lommel et al., 2013),
and LLM-based systems producing full linguis-
tic quality annotations. We analyse how fus-
ing/ensembling these approaches, when carefully
configured, can yield measurable performance
gains. Second, for Task 2, we evaluate GPT-based
AutoLQA (Automatic Language Quality Assess-
ment) systems—both off-the-shelf and fine-tuned
variants—demonstrating their applicability to er-
ror span annotation in MQM and ESA (error span
annotation, Kocmi et al., 2024) formats. Third,
for Task 3, we explore reasoning-enabled LLMs
with targeted prompting for translation improve-
ment, highlighting trade-offs between fluency- and
accuracy-oriented objectives.

By documenting both competitive and collabo-
rative results, we aim to provide insight into practi-
cal design choices—such as metric selection, data
sampling, and system fusion—that influence per-
formance in automated MT evaluation. Beyond
the leaderboard standings, our analysis identifies
patterns that may inform future research on hybrid
evaluation architectures, the role of fine-tuning in
LLM-based evaluators, and the limits of current
metrics in capturing subtle quality differences.
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2 Task 1

In Task 1, Phrase and UFAL decided to collaborate
and choose the strategy in which each organisation
submits its own primary system and one of its own
secondary systems. Each team dedicated the other
secondary slot to a joint system ensemble. The
submitted systems are marked with an asterisk* in
the respective tables.

2.1 Phrase Systems
We have two sets of models that we experimented
with in Task 1: (1) NN-based quality regression
models that directly output the quality prediction
score, and (2) LLM-based models that run the full
linguistic quality assessment that is used to calcu-
late the final score, as described below.

There are two important decisions that we made
in the course of the evaluations mainly due to our
internal research conventions and momentum, and
also due to some technical difficulties.

The first decision was about the development
metric for Task 1. Although acc∗eq tie-calibrated
pairwise accuracy (Deutsch et al., 2023) is the pri-
mary metric of the WMT25 evaluations, we used
Kendall’s τ and Pearson r coefficients as our de-
velopment proxy metrics. The main reason for this
decision was our late adoption and implementation
issues of the acc∗eq metric. Note that we also used
the two proxy metrics when fusing the CUNI and
the Phrase systems.

The second decision was about the submission
score. We decided to treat all scores in a unified
MQM/ESA fashion, i.e. internally we do not dis-
tinguish between the two scores. The first reason
for this adoption is that the evaluation is insensitive
to the dynamic range of the two metrics and—to
our knowledge—the difference between the two is
(1) lower penalization of the “Fluency/Punctuation”
MQM category and (2) higher penalization of the
non-translations. The second reason is rather practi-
cal: at Phrase, our tools (that we used off-the-shelf
for this evaluation) internally work with a single
score (let us refer to the score merely as MQM) that
is defined as follows: Given the input segment X
(with its source and hypothesis fields), we compute
the MQM score as:

MQM(X ) = max

{
0, 1− pen (X )

|Xsource|

}
, (1)

where | · | denotes the word count (note that we
compute the word count of the source segment),

and pen(·) is the sum of all penalty points retrieved
from the AutoLQA system output, where we map
the minor, major and critical errors to the penalties
of 1, 5 and 5, respectively (i.e., no quantitative
difference between major and critical errors).

2.1.1 Phrase Development Data
As development data we used the Google-MQM
(Freitag et al., 2021) dataset and the WMT22-
QE combined dev and test sets. Since the latter
only covers three language pairs (en-de, en-ru
and zh-en, 1500 segments each), we also pulled
test data from the Google-MQM set, which covers
seven language pairs (en-de, en-es, en-ru, en-zh,
he-en, ja-zh, zh-en). We randomly selected 700
segments per LP while making sure that only one
system’s translation of a source sentence was in-
cluded. We then removed all translation variants
of those source sentences from the remaining data
to prevent contamination and filtered out very self-
similar segments as well, resulting in a training
dataset of about 150k segments.

2.1.2 Phrase QPS Systems
One set of features for the ensembles is provided
by research variants of the Phrase QPS (Quality
Performance Score) system12 (pqps). We exper-
imented with three pre-trained models: XLMR-
large (Conneau et al., 2019), GTE (Zhang et al.,
2024), and RemBERT (Chung et al., 2021), which
we selected not only according to their accuracy,
but also with regard to memory and inference speed
requirements for the production environment at
Phrase.

We continued training on a large amount of in-
ternal Phrase post-edit data covering 226 language
pairs with chrF (Popović, 2015) as gold-label (re-
sulting models are tagged pe in the result tables.)

Then we further fine-tuned on combined data
from internal Phrase MQM-annotated and post-
edit data as well as our training split of the
Google-MQM and Amazon-bio-MQM datasets
(Zouhar et al., 2024). We experimented with three
gold/reference score variants: a balanced mix of
MQM-score and chrF labels (bal), the same mix
with a smoothed version of the MQM score (balsm)
and one variant with only MQM- and MQM-like-
scores (mqm) as gold label. In all cases, Equa-

1https://phrase.com/phrase-quality-technologies/
quality-performance-score/

2https://support.phrase.com/hc/en-us/articles/
5709672289180-Phrase-QPS-Overview

https://phrase.com/phrase-quality-technologies/quality-performance-score/
https://phrase.com/phrase-quality-technologies/quality-performance-score/
https://support.phrase.com/hc/en-us/articles/5709672289180-Phrase-QPS-Overview
https://support.phrase.com/hc/en-us/articles/5709672289180-Phrase-QPS-Overview
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tion (1) was the fundamental instrument for the
MQM gold label score calculation.

See Table 1 for individual system performance
on our development test sets (see Section 2.1.1).
Due to the limited number of slots, we did not
submit the best Phrase QPS system.

2.1.3 Phrase AutoLQA System
The AutoLQA system (Automatic Linguistic Qual-
ity Assessment) is an LLM-based system whose un-
derlying model is a fine-tuned gpt-4o-mini model,
marked as gpt-4o-mini-FT. This is the very same
system that was used for the primary submission
of Task 2 (see Section 3 for reference). The sys-
tem produces complete MQM annotations based
on which the MQM-score is produced via Equa-
tion (1).

This system is referred to as palqa-wmt25 in
Table 1.

2.2 CUNI/UFAL Systems

This section describes the systems submitted by the
CUNI team.

2.2.1 Training and Development data
For training, we used a subsample of WMT24 ESA
scores, counting only 2160 examples in total.

Because high ESA scores are much more fre-
quent in the full dataset, we resampled the data to
produce a more uniform score distribution, while
ensuring an even spread across language pairs.

As the development set, we used WMT23 met-
rics task en2cs DA scores. Due to the computa-
tional cost of the evaluation, we did not use other
language pairs for the evaluation during develop-
ment.

2.2.2 Systems based on Gemma 3 27B-it and
DSPy

Our primary submission (mr7.2.1, in Table 2) and
one of the secondary submissions (mr6, in Table 1
and Table 2) were based on the Gemma 3 27B-it3

used via the DSPy framework (Khattab et al., 2024).
Its MIPROv2 optimiser (Opsahl-Ong et al., 2024)
was used to automatically select n-shot examples
and adjust the prompts for improved performance.

3For both optimisation and inference, we run several in-
stances of the model using vLLM 0.9.2+rocm641, each in-
stance on 2x AMD MI210 with 16k tokens context. We used
a LiteLLM proxy server for load balancing between instances.
We also used GNU Parallel (Tange, 2025) as a workaround
for performance issues when trying to scale the number of
concurrent requests to fully utilise GPUs.

We selected the Gemma 3 27B-it model for its
relatively compact size and strong multilingual ca-
pabilities. Our focus was on using reasonably sized
open-weight models that we can run on our hard-
ware, so we chose not to use larger commercial
models available through APIs, even though we
expect them to perform better.

The optimisation target was essentially rescaled
Mean Squared Error:

score(X) =
1

n

n∑
i=1

1− (Xi,gold −Xi,pred)
2

1002
(2)

Both submissions first predict,in one or multiple
LLM calls, seven integer scores (0–10) covering
different translation quality dimensions:

• accuracy and completeness

• terminology and consistency

• fluency and coherence

• style tone and audience fit

• locale conventions and formatting

• technical integrity

• cultural appropriateness

These categories were inspired by MQM, with
initial detailed descriptions drafted by GPT o3-
mini, see Appendix B for details on the optimized
prompts:

After predicting these dimensions, both mr6 and
mr7.2.1 output an overall translation quality score
(0–100 integer). Similarly to the approach taken
by the Phrase team, we chose not to distinguish
between pairs that solicit ESA scores and MQM
scores and use this 0-100 score for both.

The key difference between the systems lies in
the overall score aggregation:

• mr6: Predicts each dimension separately in
isolation, with a separate request for each. The
overall score is then predicted in a separate
LLM call, using only the dimension scores
(not the original text). This approach was mo-
tivated by the lack of gold data for dimension-
level scores and the absence of a clear formula
to combine them. We originally planned to
replace this aggregation with a simpler regres-
sion model (e.g., linear regression or gradient
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Table 1: Task 1 Individual models’ performance. The asterisk * denotes submitted systems: palqa-wmt25 is Phrase’s
secondary submission and cuni-mr6-overall is CUNI’s secondary submission. Best scores in each group in bold.

google-mqm wmt22-qe

Feature/Model Type Kendall’s τ Pearson r Kendall’s τ Pearson r

pqps-gte-pe NN 0.0776 0.1093 0.2185 0.3710
pqps-rembert-pe NN 0.0970 0.1486 0.2996 0.4576
pqps-xlmr-pe NN 0.0954 0.1401 0.2760 0.4298
pqps-gte-bal-v1 NN 0.2306 0.4538 0.2670 0.4293
pqps-gte-bal-v2 NN 0.2324 0.4547 0.2589 0.4349
pqps-rembert-bal NN 0.2465 0.4855 0.3184 0.4830
pqps-xlmr-bal NN 0.2568 0.4936 0.3083 0.4778
pqps-gte-balsm NN 0.2295 0.3973 0.2554 0.4390
pqps-rembert-balsm NN 0.2422 0.4106 0.3235 0.4945
pqps-xlmr-balsm-v1 NN 0.2164 0.4288 0.2491 0.4416
pqps-xlmr-balsm-v2 NN 0.2292 0.3736 0.2993 0.4804
pqps-gte-mqm NN 0.2398 0.4660 0.0789 0.2828
pqps-rembert-mqm NN 0.2406 0.4652 0.2572 0.4119
pqps-xlmr-mqm NN 0.2620 0.5110 0.0058 0.0954

palqa-wmt25* LLM 0.2790 0.4987 0.3145 0.4017

cuni-mr6-y0 LLM 0.1767 0.3058 0.2153 0.2308
cuni-mr6-y1 LLM 0.1794 0.3311 0.2176 0.2851
cuni-mr6-y2 LLM 0.1800 0.2711 0.2240 0.2008
cuni-mr6-y3 LLM 0.1923 0.3098 0.2139 0.2192
cuni-mr6-y4 LLM 0.1249 0.2085 0.2332 0.2297
cuni-mr6-y5 LLM 0.1647 0.2759 0.1886 0.1978
cuni-mr6-y6 LLM 0.2026 0.3386 0.2034 0.2259
cuni-mr6-overall* LLM 0.1826 0.3460 0.2214 0.2481

boosting) after the initial MIPROv2 optimisa-
tion, but our preliminary experiments showed
no consistent improvements. We therefore
submitted the LLM-based aggregation ver-
sion, although the lack of gain might be due
to unidentified implementation issues.

• mr7.2.1: Predicts all dimensions and the over-
all score in a single LLM call.

Both systems use the chain-of-thought technique
(Wei et al., 2022) as implemented by the DSPy.4

If the model fails to produce the response in the
correct format, there are 2 retries with different
temperatures: 0.5 and 2

3 .
In addition, mr7.2.1 includes a fallback mode

that bypasses chain-of-thought and generates the
final answer directly if reasoning fails in all 3 tries
(most commonly due to getting stuck in generating
repetitive loops).

4https://dspy.ai/api/modules/ChainOfThought/

The complete training and inference code for the
models submitted by CUNI will be available on
GitHub.5

We evaluated our systems on WMT23 metrics
using the mt-metrics-eval tool. We show the results
in Table 2.

To get some idea whether the MIPROv2 optimi-
sation and chain-of-thought actually contributes to
better performance, we evaluate several modifica-
tions of the mr7.2.1 submission: _noopt is a version
with no MIPROv2 optimisation and consequently
no n-shot examples. _nocot is a version where
the output is generated directly with no chain-of-
thought reasoning. The _nocot_noopt variant dis-
ables both. We can notice that disabling either of
these or both at the same time seems to worsen the
performance in all of the tracked metrics.

5https://github.com/hrabalm/
wmt25-mt-eval-task

https://dspy.ai/api/modules/ChainOfThought/
https://github.com/hrabalm/wmt25-mt-eval-task
https://github.com/hrabalm/wmt25-mt-eval-task
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Table 2: CUNI models’ performance on WMT23 en2cs dev set: segment-level Pearson r, system-level Pearson
r and segment-level accuracy with optimised tie threshold. Our systems are in bold, systems marked with ** are
CUNI primary submissions and systems marked with * are CUNI secondary submissions.

Model Seg. P r Rank Sys. P r Sys. rank acc∗eq acc∗eq rank

XCOMET-Ensemble 0.4017 1 0.9025 1 0.5404 2
XCOMET-QE-Ensemble[noref] 0.3952 2 0.9082 1 0.5286 4
COMET 0.3771 3 0.8646 2 0.5239 5
BLEURT-20 0.3730 3 0.7935 3 0.5111 7
MetricX-23 0.3606 4 0.8914 1 0.5500 1
KG-BERTScore[noref] 0.3503 4 0.7899 3 0.5062 10
CometKiwi[noref] 0.3503 5 0.7898 3 0.5171 6
MetricX-23-QE[noref] 0.3477 5 0.8782 2 0.5392 3
cometoid22-wmt22[noref] 0.3411 6 0.8254 3 0.5012 11
mr7.2.1[noref]** 0.3320 6 0.8021 3 0.3858 25
mr7.2.1_noopt[noref] 0.3146 7 0.7452 4 0.3351 27
mr7.2.1_nocot[noref] 0.3144 7 0.7508 4 0.3483 26
mr6[noref]* 0.3142 7 0.8114 3 0.4078 24
mr7.2.1_nocot_noopt[noref] 0.3115 7 0.7494 4 0.3295 29
GEMBA-MQM[noref] 0.3094 7 0.8520 2 0.3295 28
MS-COMET-QE-22[noref] 0.2864 8 0.7965 3 0.4984 12
prismRef 0.2649 9 0.5571 5 0.4910 14
XLsim 0.2589 9 0.6268 4 0.5075 9
YiSi-1 0.2453 10 0.5677 4 0.4968 13
BERTscore 0.2283 11 0.4798 5 0.4899 15
tokengram_F 0.2031 12 0.4087 7 0.4817 17
chrF 0.2006 13 0.4495 6 0.4794 18
f200spBLEU 0.1986 13 0.4962 5 0.4793 19
BLEU 0.1857 14 0.5186 5 0.4612 23
embed_llama 0.1720 15 0.4661 6 0.4767 20
prismSrc[noref] 0.1710 15 -0.0416 7 0.4615 22
eBLEU 0.1689 15 0.4672 6 0.4837 16
mre-score-labse-regular 0.1298 16 0.7184 4 0.5089 8
Random-sysname[noref] 0.0018 17 0.0145 7 0.4646 21

2.3 Fusion / Ensembling

We used the features/models described above to
train six standard regression models: Linear Re-
gression (Freedman, 2005), Ridge Regression (Ho-
erl and Kennard, 1970), Decision Tree Regression
(Breiman et al., 1984), Random Forest Regression
(Breiman, 2001), Gradient Boosting Regression
(Friedman, 2000), and MLP Regression (Rosen-
blatt, 1958), all with default scikit-learn (Pedregosa
et al., 2011) hyper-parameters. The models were
trained on our training data split of the Google-
MQM public dataset (see Section 2.1.1). For both
the Phrase-only ensembles and the Collaboration
ensembles we compared using all features as well
as a “slick” version which uses only the best fea-

ture of each type: pqps-xlmr-bal, palqa-wmt25 and
cuni-mr6-overall. See results in Table 3. The sub-
mitted systems are marked with an asterisk. We
selected the Gradient Boosting Regressor because
it seems to achieve a good balance across both test-
sets as well as both metrics.

For a language-pair specific breakdown of re-
sults for the submitted systems refer to Table 7.

3 Task 2 (Phrase)

In Task 2, we experimented with using our inter-
nal AutoLQA systems that are based on LLMs and
in-context learning. AutoLQA systems have been
developed to produce the complete MQM annota-
tion, i.e. they include the error category by default.
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Table 3: Task 1 Phrase-only and Collaboration ensembles for different regression models and feature sets. Note on
the submitted systems: phrase-slick is Phrase’s primary submission, collab-slick is Phrase’s secondary submission,
collab-full is CUNI’s secondary submission

Feature Set Model google-mqm wmt22-qe

Kendall’s τ Pearson r Kendall’s τ Pearson r

phrase-full Linear Regression 0.2829 0.5517 0.3133 0.5092
15 features Ridge Regression 0.2829 0.5517 0.3137 0.5095

Decision Tree Regressor 0.2720 0.4976 0.3533 0.5047
Random Forest Regressor 0.3292 0.5455 0.3006 0.4936
Gradient Boosting Regressor 0.2912 0.5531 0.3423 0.5250
MLP Regressor 0.2970 0.5641 0.3214 0.5115

phrase-slick Linear Regression 0.2902 0.5562 0.3423 0.5153
2 features Ridge Regression 0.2902 0.5562 0.3423 0.5153

Decision Tree Regressor 0.2962 0.5431 0.3451 0.5052
Random Forest Regressor 0.2706 0.5175 0.2937 0.4459
Gradient Boosting Regressor** 0.2931 0.5549 0.3474 0.5145
MLP Regressor 0.2921 0.5543 0.3444 0.5118

collab-full Linear Regression 0.2844 0.5529 0.3179 0.5113
23 features Ridge Regression 0.2842 0.5526 0.3184 0.5115

Decision Tree Regressor 0.2720 0.4976 0.3533 0.5047
Random Forest Regressor 0.3327 0.5553 0.2990 0.4940
Gradient Boosting Regressor* 0.2931 0.5558 0.3455 0.5302
MLP Regressor 0.2732 0.5369 0.3249 0.5145

collab-slick Linear Regression 0.2934 0.5580 0.3424 0.5178
3 features Ridge Regression 0.2934 0.5581 0.3424 0.5178

Decision Tree Regressor 0.2930 0.5397 0.3507 0.5099
Random Forest Regressor 0.2824 0.5209 0.3096 0.4660
Gradient Boosting Regressor* 0.2939 0.5524 0.3558 0.5213
MLP Regressor 0.2812 0.5484 0.3365 0.5108

Table 4: Task 2 F1 score for various engines. The results
are reported on our Google-MQM test data. Note the
gpt-4o-mini-FT is Phrase’s fine-tuned version of the
gpt-4o-mini model.

Engine F1

gpt-4o-mini 0.1835
gpt-4.1-mini* 0.2277
gpt-4o-mini-FT** 0.2669

We used the Google-MQM test set as our devel-
opment dataset, as described in Section 2.1.1.

We used GPT engines for this task. We exper-
imented with both the off-the-shelf GPT models,
as well as our fine-tuned (FT) versions of some of
the models. Fine-tuning was performed on ∼100k
segments of Phrase internal data. Table 4 depicts
the performance increase when FT is used.

We also experimented with the wording mainly
reducing the prompt from the complete MQM task
to ESA, i.e., stripping off the error category part of
the prompt. We are not allowed to disclose the full
prompt but we have experienced that this reduction
did not change the performance on our dev set. We
have therefore decided to use one of our AutoLQA
systems based on the gpt-4o-mini-FT model as
our primary submission (denoted by double asterisk
in Table 4).
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Table 5: Task 3 Evaluation results for different systems.
C-QE-∆ denotes the COMET-QE delta.

System C-QE-∆ TER GtE-ratio

prod* 0.005 44.51 0.0001
onlyerrors 0.026 25.24 0.0010
accuracy 0.024 15.23 0.0016
fluency 0.050 37.05 0.0014
fluency_s** 0.043 28.27 0.0015

Table 6: Task 3 Primary system quality estimation
scores. C-QE denotes the absolute COMET-QE score.

Dataset baseline post-edit
C-QE QPS C-QE QPS

devtest 0.287 0.901 0.330 0.921
eval-full 0.055 0.878 0.073 0.901
eval-en-cs 0.079 0.910 0.102 0.923

Our secondary submission (denoted by *) is
based on the FT gpt-4.1-mini. Due to higher
cost, we have not evaluated the model on our de-
velopment set and have relied on the results in
Table 4 and on internal observations at Phrase
where in most cases gpt-4.1-mini outperforms
gpt-4o-mini.

4 Task 3 (Phrase)

For Task 3, our submissions are based on GPT
models as well. We experimented with varying
prompts, OpenAI models and settings (notably the
amount of reasoning effort which can be set to
"low", "medium" or "high" in the API).

After visual inspection and analysis of the error
spans and scores provided for the development set,
we deemed them quite noisy and not informative
enough. We therefore opted for not using this in-
formation in the experiments. Our systems only
utilise the source sentences and the MT outputs.

Our secondary submission prod (denoted by a
single asterisk in Table 5) is loosely inspired by
Phrase’s production systems for automated MT
adaptation. We submitted it as a baseline; how-
ever, this system is tailored to addressing typical
customer use cases, such as correcting terminology,
formality, or the placement of inline tags. There-
fore, most of its instructions are not applicable to
the WMT setting, so the system wastes its attention
on irrelevant aspects. In addition, it required us to
set a specific formality and without further domain-

specific adjustments, the system likely changed the
tone in many cases, leading to substantial amounts
of post-editing.

We also experimented with dedicated prompts
and a simpler setup targeted towards only improv-
ing the general quality of the translations. We sim-
plified the system as well—whereas our production
systems typically perform multiple passes over the
data, here, we limited the system to just a single
pass.

In terms of OpenAI models, we find that rea-
soning models are well suited for this task. We
evaluated several combinations of reasoning effort
settings and model types (notably o3 and o3-mini).
Our primary submission, as well as most of the con-
trastive runs, utilise the o36 model with medium
reasoning effort.

We evaluated four different prompts:7

• onlyerrors — focused on finding errors in
the translation

• accuracy — improving translation accuracy

• fluency — improving translation fluency

• fluency_s — improving translation fluency,
the prompt contains individual steps that the
system should follow.

Based on the results on the WMT development
set, we selected the prompt fluency_s as our pri-
mary submission. This system has the second-
highest improvement in COMET-QE score and
makes fewer edits than fluency, thereby reach-
ing a better GtE-ratio (gain-to-edit ratio, i.e., the
difference in COMET8 divided by TER, as defined
in the task description). It seems noteworthy that
COMET-QE score grows more when the prompt
is focused on improving translation fluency, as op-
posed to accuracy.

4.1 Analysis

Based on the official leaderboard, none of our sys-
tems improved over the baseline translations on the
current test set. In order to explain this negative
result, we carried out a post-submission analysis
using the current evaluation data.

We found that based on COMET-QE, our sys-
tem does improve the general translation quality.

6The full model name is o3-2025-04-16.
7We describe each in more detail in Appendix C.
8Approximated here using COMET-QE.
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However, we also found COMET-QE to be quite
unstable (see the absolute scores across different
datasets in Table 6) and decided to complement
it with our proprietary QPS metric (see Sec. 2.1.2
for reference). This again showed a consistent im-
provement in quality.

Finally, we carried out a blinded human evalu-
ation using a small random sample of 50 English-
Czech evaluation examples. We removed exam-
ples with very low edit rates (TER<10) prior to the
sampling in order to prevent the annotator from
spending time comparing very similar outputs. The
annotator saw each candidate translation side by
side (ordered randomly; one being the original MT
output and the other our post-edited version) and
rated each output on the scale of 1 to 10.

Consistently with the automated quality estima-
tion results (COMET-QE and QPS), the annotator
rated the post-edited outputs as higher quality. Out
of the 50 examples, our system output was pre-
ferred in 31 cases and tied in 10, whereas the base-
line output was only preferred in 9 instances. The
average score was 8.48±1.20 and 7.50±1.53 (ap-
proximate randomization test p-value≈0.002) for
the system and baseline respectively, illustrating
that while translation quality was quite high overall,
translations were not generally deemed perfect by
the annotator.

These findings leave conclusions quite open; on
the one hand, both automated QE metrics and the
human annotator (albeit on just a single language
pair) showed clear preference for our post-edits.
On the other hand, the official evaluation (which
uses reference-based COMET) does not rate the
system as better than the baseline. Further analysis
leveraging also the official reference translations
would be needed to explain this apparent contradic-
tion.

5 Conclusion

We presented our submissions to WMT25 MT Eval-
uation Task developed by two teams, CUNI and
Phrase: two primary and four secondary submis-
sions for Task 1, one primary and two secondary
submissions for Task 2 and one primary and one
secondary submission for Task 3.

For system fusion/ensembling used in Task 1,
the rule “more features are better” generally holds,
although not for every individual language-pair or
metric. It turns out that the ability of the regressor
model “saturates” and gets stuck in the diminishing-

reward paradigm soon.
It is interesting to see that competitive results

can be achieved by combining very few systems
if we choose them well, as is the case of “slick”
systems.

In Task 3, we failed to improve on the baseline
translation quality in the official rankings. How-
ever, our internal post-submission analysis showed
a different picture and we currently lack a good
explanation for the disagreement.

During the submission, we saw few puzzling out-
liers for certain language pairs in all tasks’ leader-
board, and we expect to reveal the issues after the
official annotations are released.
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A Task 1 Language-Pair Specific Breakdown

Table 7: Task 1: Language-pair specific breakdown for the submitted systems

google-mqm wmt22-qe

Submission LP Kendall’s τ Pearson r Kendall’s τ Pearson r

phrase-slick en-de 0.3282 0.6240 0.3089 0.4660
en-es 0.3293 0.6466 — —
en-ru 0.4037 0.6408 0.3571 0.4885
en-zh 0.2602 0.5467 — —
he-en 0.3099 0.4841 — —
ja-zh 0.1878 0.3163 — —
zh-en 0.2767 0.5971 0.2184 0.3463

palqa-wmt25 en-de 0.2867 0.4886 0.3005 0.3962
en-es 0.3123 0.5699 — —
en-ru 0.3323 0.4341 0.3525 0.4405
en-zh 0.2105 0.4201 — —
he-en 0.3300 0.4829 — —
ja-zh 0.2460 0.4050 — —
zh-en 0.2502 0.4458 0.2180 0.2636

collab-slick en-de 0.3232 0.6156 0.3307 0.4805
en-es 0.3337 0.6417 — —
en-ru 0.4016 0.6394 0.3783 0.5011
en-zh 0.2532 0.5398 — —
he-en 0.3189 0.4903 — —
ja-zh 0.1964 0.3016 — —
zh-en 0.2843 0.6013 0.2207 0.3493

cuni-mr6-overall en-de 0.1608 0.3648 0.3736 0.5124
en-es 0.2667 0.4966 — —
en-ru 0.2549 0.4706 0.3850 0.4754
en-zh 0.1142 0.3932 — —
he-en 0.2746 0.4372 — —
ja-zh 0.2220 0.2402 — —
zh-en 0.1632 0.3069 0.1540 0.1889

collab-full en-de 0.3638 0.6730 0.3235 0.4525
en-es 0.3486 0.6209 — —
en-ru 0.4562 0.7262 0.3790 0.5264
en-zh 0.2471 0.5099 — —
he-en 0.2773 0.4692 — —
ja-zh 0.1614 0.2578 — —
zh-en 0.3371 0.6908 0.1906 0.3614

B Task 1 - DSPy Models Optimized Prompts

DSPy’s resulting “programs” for our mr* submissions, based on which the final single prompt requesting
all the scales or the individual prompts are constructed. These include the selected n-shot examples and
any adjustments to the initial data field descriptions or instructions.
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B.1 mr6
The full version of optimised “program” (instructions and selected few-shot examples) for mr6 can be
found in the GitHub repository.9

B.2 mr7.2.1
The full version of optimised “program” (instructions and selected few-shot examples) for mr7.2.1 can be
found in the GitHub repository.10

C Task 3 Prompts

In this section, we share the details of instructions specifically tailored for our WMT systems.
There is also a common core part of the prompt which sets up the task and specifies processing

requirements. This part is proprietary and therefore not shared here.

• onlyerrors Focus only on errors (grammar, fluency, mistranslation etc.), do not perform subjective
or preferential edits.

• fluency Concretely, the task is to improve the overall fluency and naturalness (with translation
accuracy being important but secondary), while minimising the number of edit operations. Avoid
translationese and prefer loose translation when it allows for a more idiomatic translation.

• fluency_s Concretely, the task is to improve the overall fluency and naturalness (with translation
accuracy being important but secondary), while minimising the number of edit operations. Avoid
translationese and prefer loose translation when it allows for a more idiomatic translation.

Let’s go step by step:

– Identify errors, translationese, or disfluent spans in the translation.
– Consider several possible corrections.
– Out of the possible outputs, choose one that is the most natural-sounding and requires few

changes (edit operations).

• accuracy Concretely, the task is to improve the overall accuracy (with translation fluency being
secondary), while minimising the number of edit operations.

9https://github.com/hrabalm/wmt25-mt-eval-task/blob/main/mr6/best.json
10https://github.com/hrabalm/wmt25-mt-eval-task/blob/main/mr7.2.1/best.json

https://github.com/hrabalm/wmt25-mt-eval-task/blob/main/mr6/best.json
https://github.com/hrabalm/wmt25-mt-eval-task/blob/main/mr7.2.1/best.json

