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Abstract

The rapid advancement of large language mod-
els (LLMs) has introduced new challenges in
their evaluation, particularly for multilingual
settings. The limited evaluation data are more
pronounced in low-resource languages due to
the scarcity of professional annotators, hinder-
ing fair progress across languages. In this work,
we systematically investigate the viability of
using machine translation (MT) as a proxy for
evaluation in scenarios where human-annotated
test sets are unavailable. Leveraging a state-of-
the-art translation model, we translate datasets
from four tasks into 198 languages and em-
ploy these translations to assess the quality and
robustness of MT-based multilingual evalua-
tion under different setups. We analyze task-
specific error patterns, identifying when MT-
based evaluation is reliable and when it pro-
duces misleading results. Our translated bench-
mark reveals that current language selections in
multilingual datasets tend to overestimate LLM
performance on low-resource languages. We
conclude that although machine translation is
not yet a fully reliable method for evaluating
multilingual models, overlooking its potential
means missing a valuable opportunity to track
progress in non-English languages.

1 Introduction

Large-scale evaluation of multilingual language
models (MLMs) across hundreds of languages
has remained a persistent challenge as the exist-
ing benchmarks cover a subset, and mostly high-
resource, of languages (Singh et al., 2024, 2025).
Although human-translated (HT) evaluation sets
offer accurate and reliable evaluation of MLMs,
creating them for hundreds of languages is costly,
time-consuming, and sometimes impossible. Con-
sequently, tracking the progress of MLMs in most
languages has lagged behind. Moreover, multi-
lingual benchmarks often cover different subsets

*Equal contribution.

of languages, and such inconsistent evaluation se-
tups create a fragmented picture of MLM capabili-
ties (Liang et al., 2020; Hu et al., 2020; Ruder et al.,
2021).

Recent advances in machine translation (MT)
have emerged as a promising solution to these
challenges of multilingual evaluation. Prior stud-
ies have shown that state-of-the-art MT systems
achieve human-level translation quality in certain
high-resource languages (Kocmi et al., 2023, 2024).
While MT has been used to construct evaluation
sets (Chen et al., 2024), to our knowledge, there
has been no systematic study of the viability of
MT-based evaluations across different evaluation
setups and diverse downstream tasks in nearly 200
languages. Moreover, although previous work has
shown the limitations of MT models, such as trans-
lation artifacts and stylistic shifts (Park et al., 2024;
Wang et al., 2023), there has been no comprehen-
sive analysis of the potential risks of using MT-
based datasets for MLM evaluation.

In this work, and by considering recent MT ad-
vances, we investigate the viability of using MT for
large-scale multilingual evaluation where human-
annotated data is unavailable. Using four popu-
lar multilingual tasks, we translate their test sets
into 198 languages using NLLB ("No Language
Left Behind"), which officially supports 200 lan-
guages (NLLB Team et al., 2022). We then com-
pare three MLMs’ performance, i.e., XLM-R (both
base and large versions) (Conneau et al., 2020),
BLOOMz (Muennighoff et al., 2022), and AYA-
101 (Ustiin et al., 2024b), on these MT-based test
sets against their HT equivalents, using multiple
evaluation setups (zero-shot fine-tuning and zero-
shot prompting) and both accuracy and rank cor-
relation as metrics. Beyond overall performance
comparisons, we analyze how translation quality
relates to evaluation results, detecting MT-specific
error types using an LLM-as-a-judge framework
in the selected tasks. Finally, we assess whether
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current multilingual benchmarks misrepresent the
performance of MLMs when limited to small lan-
guage subsets. More specifically, we try to answer
the following research questions:

* To what extent does the use of machine trans-
lation affect MLM performance estimates?

* To what extent is MLM performance on MT-
based evaluations influenced by translation
quality?

* What major translation error types occur in
cases where MLMs succeed on human trans-
lations but fail on machine translations?

* To what extent do existing multilingual bench-
marks misrepresent MLM performance?

Across tasks and models, MT-based evalua-
tions yield results that are highly correlated with
HT-based evaluations (average Spearman’s 0.95),
with only small average accuracy differences (<1.5
points), Table 3 and 4. Furthermore, translation
quality shows a moderate positive correlation with
performance differences, suggesting that MT reli-
ability depends partly on the underlying MT sys-
tem’s accuracy and the sensitivity of the down-
stream task to the translation quality, Table 5. Our
error analysis reveals that lower performance on
MT data is often linked to lexical mistranslations
and subtle semantic shifts, though major meaning-
altering errors are relatively rare. We show that
LLM-as-a-judge might serve as a proxy for filtering
low-quality translation examples, thereby improv-
ing the reliability of MT-based evaluations. Finally,
we find that restricting evaluation to the language
subsets in the widely-used benchmarks underesti-
mates the performance of MLMs on high-resource
languages and overestimates their performance on
low-resource languages by up to 4 accuracy points
compared to evaluation across 198 languages.

2 Related work

Multilingual large language models (LLMs) are
rapidly expanding their language coverage, reach-
ing to hundreds of languages (Ustiin et al., 2024a;
Yang et al., 2025). Yet, benchmarks have strug-
gled to keep pace, often covering only a fraction
of these languages (e.g., Global MMLU covers 42
languages (Singh et al., 2025), whereas models
like Gemma 3 support over 140 (Gemma Team
et al., 2025)). This imbalance makes it difficult

to measure progress fairly and consistently across
languages. On the other hand, creating human-
annotated benchmarks for every language is im-
practical due to high costs and limited expertise.
In this regard, machine translation is an attractive
potential alternative to expand existing multilin-
gual datasets at scale. Although previous stud-
ies have shown MT systems may introduce chal-
lenges such as hallucinations and translationese
artifacts (Artetxe et al., 2020; Wang and Sennrich,
2020; Zhang and Toral, 2019), recent improve-
ments, especially for mid and low-resource lan-
guages, have considerably enhanced translation
quality (Ranathunga et al., 2023). Thus, leverag-
ing advanced MT systems is an efficient way to
expand the language coverage of benchmarks more
quickly. This approach opens the door to more
comprehensive and equitable evaluations, better
reflecting the multilingual capabilities of LLMs.
While Thellmann et al. (2024) also investigate
whether machine translated benchmarks can reli-
ably assess model performance across languages,
they limit the scope of their study to 20 Euro-
pean languages. Since European languages are
already overrepresented in existing NLP resources
and benchmarks (Asai et al., 2022), while many
other languages remain severely underrepresented
(Joshi et al., 2020), we instead scale our evalua-
tion to 198 languages to provide a more balanced
assessment.

3 Methods

In this paper, we evaluate multilingual LLMs on
four tasks across 198 languages. To this end, we
create MT test data using the NLLB model and as-
sess performance under two evaluation paradigms:
zero-shot testing and zero-shot prompting. In this
section we provide a comprehensive overview of
our methods used for large-scale multilingual evalu-
ation. In Section 4, we will explain which methods
were used to generate the MT test data itself.

3.1 Tasks and datasets

We massively scale the evaluation of LLMs on four
datasets.

XNLI The Cross-Lingual Natural Language In-
ference (XNLI) dataset (Conneau et al., 2018) con-
tains premise-hypothesis pairs labeled with: ‘entail-
ment’, ‘neutral’, or ‘contradiction’ in 15 languages.

The original pairs come from English and the
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test sets were human translated into the other lan-
guages.

PAWS-X The Cross-Lingual Paraphrase Adver-
saries from Word Scrambling (PAWS-X) dataset
(Yang et al., 2019) requires the model to determine
whether two sentences are paraphrases of one an-
other. The parallel test data has been provided in
7 languages. To create this dataset, a subset of
the PAWS development and test sets (Zhang et al.,
2019) was professionally translated from English
to 6 other languages.

XCOPA The Cross-lingual Choice of Plausible
Alternatives (Ponti et al., 2020) evaluates common-
sense reasoning in 11 languages. The samples con-
tain a premise and question paired with two answer
choices from which the model can select. The
dataset is manually translated from English into 11
other languages.

XStorycloze The Cross-lingual Storycloze (Lin
et al., 2021) proposes a common-sense reasoning
task in 11 languages, in which the model predicts
which one of two story endings is the most likely
to follow after a given short story. The Storycloze
dataset was professionally translated from English
into 10 other languages.

3.2 Multilingual language models

For the large-scale evaluation, we focus on the
base and large version of XLM-R (Conneau et al.,
2020) pre-trained on 100 languages as it is one
of the most popular MLMs. In addition, we re-
port scores from BLOOMz 7.1b (Scao et al., 2022)
and AYA-101 13b (AYA)(Ustiin et al., 2024b).
BLOOMgz is trained on 46 languages and AYA on
101 languages. Moreover, both models are further
instruction-tuned on a mixture of prompts in dif-
ferent languages. Given that the PAWS-X dataset
was included during instruction-tuning, we evalu-
ate BLOOMz and AYA on the held out datasets
only, i.e., XNLI, XCOPA and XStorycloze. Note
that BLOOMz and AYA were selected over other
MLMs, such as Llama (Touvron et al., 2023), as
they are the largest publicly available and explic-
itly MLMs (i.e., statistics on the pretraining data
distribution across languages is publicly available).

3.3 Selection of test languages

For our selection of test languages, there are two
constraining factors: (1) the language has to be
covered by the NLLB-200 translation model and

| Unseen Low Mid High | Total

% of data 0 >0and <0.1 >0.1and<lI >1
XLM-R | 106 30 34 26 | 196
BLOOMz | 131 21 7 9 | 168
AYA | 103 57 25 13 ] 198

Table 1: Number of languages categorized as high, mid,
low, and unseen languages when looking at the percent-
age of seen pretraining data of the respective LMs.

FLORES-200 dataset, and (2) the script of the lan-
guage needs to have been seen during the pretrain-
ing of the model. We then separately filter out the
test languages by unseen scripts for each model.
This leaves us with 196, 168, and 198 test lan-
guages for XLM-R, BLOOMz, and AYA, respec-
tively, see Appendix J for the complete lists. Note
that the number of compatible languages is lower
for BLOOMz as it has seen fewer writing scripts
during pretraining.

Resource categorization by pretraining distribu-
tion Moreover, we categorize the test languages
for each model separately based on the percentage
of total data that they contributed during pretrain-
ing. In Table 1, we report the percentage thresh-
olds used for our categorization and the resulting
number of test languages for each category and
model. As the pretraining data coverage is reported
in numbers of GB for XLLM-R, we convert these
scores to percentages of the full pretraining data.
For BLOOMz, we use the reported language distri-
bution numbers !, and for AYA, we consider mT5
pretraining data distribution as it is utilized as the
base model for AYA.

3.4 Evaluation settings

Zero-shot testing We fine-tune XLM-R on the
entire training set for each task in English. We then
use our fine-tuned model for zero-shot testing in the
test languages. We fine-tune our model using the
HuggingFace Library, see Appendix A for details.

Zero-shot prompting BLOOMz and AYA are
instruction-tuned on multiple classification tasks,
thus we test these models out-of-the-box in a
zero-shot prompting set up. This has the ben-
efit that dataset artifacts, which are commonly
known to be leveraged during fine-tuning, cannot
be learned (McCoy et al., 2020). As BLOOMz and
AYA fail to predict a third option for XNLI (neu-
tral), we report results on a binarized version of the

1https: //huggingface.co/bigscience/bloom
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metric ‘ High Mid Low Unseen ‘ Ave.  Med.
NLLB-Distil

chrF++ ‘4934 46.92 43.22
NLLB-3.3B

chiF++ | 525 508 461 403

37.12 | 44.15 4507

| 445 455

Table 2: The quality of the MT system across high, mid,
and low-resource languages using chrF++ based on the
XLM-R model’s categorization.

task by aggregating sentences with the ‘neutral’ and
‘contradiction’ labels into one class and making the
model predict entailment or not. Moreover, the
instructions are given in English. see Appendix A
for the prompts per task.

Finally, note that our goal is not to compare perfor-
mance of BLOOMz and AYA to XLM-R but rather
to test the reliability of machine-translated test sets
in two popular evaluation paradigms.

Evaluation metric As the automatic evaluation
metric for testing our MT quality, we use the
chrF++ (Popovié, 2017). This metric calculates
the character and word n-gram overlap between the
machine and human reference translations. It is
a tokenization-independent metric aligning better
with human judgments for morphologically-rich
languages compared to BLEU (Tan et al., 2015;
Kocmi et al., 2021; Briakou et al., 2023). We also
employ the LLMs-as-a-judge technique to evaluate
translation quality and analyze the types of errors
that occur in translation. For the evaluation, we
use the FLORES-200 dataset (NLLB Team et al.,
2022), which includes human-translated data for
200 languages, and select 100 sentences from each
language.

4 Machine translating test data

For machine translation, we employ the NLLB
model covering 202 languages (NLLB Team et al.,
2022). Through extensive analysis, Zhu et al.
(2024) have shown that NLLB performance sur-
passes other powerful LLMs such as ChatGPT
(OpenAl, 2022) and GPT-4 (Achiam et al., 2023)
when translating out of English (EFn = tgt set-
ting). NLLB also demonstrates a minimal differ-
ence to the closed source system, Google translate?
on the Flores-101 dataset. To gain a better un-
derstanding of the role of the MT system on the
translated data quality and, consequently, its perfor-

2h'ctps ://translate.google.com/

mance on downstream tasks, we experiment with
two NLLB versions. We choose the distill NLLB
with 600M parameters and the 3.3B NLLB model
using greedy sampling. For each example, we
translate each sentence (e.g., SENTENCE] and SEN-
TENCE2 in PAWS-X) separately. In Appendix B,
we provide some of the lessons learned from our
MT experiments.

In Table 2, we report the average chrF++ scores
for translations obtained with the NLLB-Distil and
NLLB-3.3B models on the dev set of FLORES-200
dataset including human translation data in 200 lan-
guages (NLLB Team et al., 2022). We categorize
languages by XLM-R resource ranking (high, mid,
low, and unseen) and observe that NLLB-3.3B con-
sistently performs better than the 600M version
across all categories. Thus, while the smaller model
has been added for analysis purposes, we use the
NLLB-3.3B for translation throughout the paper
unless stated otherwise. Moreover, we confirm that
our scores for all languages are among the best
performance of SOTA multilingual MT systems
(Bapna et al., 2022; NLLB Team et al., 2022).

5 [Evaluating the reliability of MT data

In this section, we study the opportunities and
challenges of using MT to extend multilingual
benchmarks and assess model performance across
a broader range of languages from two perspec-
tives, i.e. the performance gap when measuring on
human versus machine translated data and the qual-
ity of the MT data itself. Thus, in Section 5.1, we
first study the degree to which machine translation
alters the reliability and validity of performance
assessments for LLMs. Then, in Section 5.2, we
evaluate the quality of the machine translated data
itself through automatic metrics and LLM-based
judgments, both to analyze error patterns and to
serve as a proxy for filtering low-quality translated
data for evaluation.

5.1 Evaluation gaps between MT and HT

5.1.1 Average performance changes

The key motivation for using machine translation
in expanding multilingual benchmarks is to re-
duce costly and time-consuming human annotation.
However, this raises an important question: Does
relying on machine-translated data compromise
the validity of LLMs evaluations? If model perfor-
mance on MT data is substantially different from
that on human translated data, evaluation outcomes
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ar bg de el es et eu fr hi ht id

it

ja ko my qu ru SW ta te ur vi zh

XLM-R

XCOPA
XStoryCloze 80/80
XNLI
PAWS-X

69/73
- - 84/84
78/78 82/82 82/82 81/80 83/78
90/91 91/91

78/79
82/83 75/80
91/90

79179 88/87

50/57 76/69 75/73

49/59
71/70

66/58 64/68
75176
70174

69/66 71/66 68/70 72/73
87/86

79174

84/85

76/75
79182 -

78/81

76/76 77119 71/78
- 83/82

81/84 81/83

BLOOMz

XCOPA

- - 52/52 - -
XStoryCloze 88/88 91/91 84/78 85/84

N/A  78/78 62/65

51/52 60/63 75/72 N/A 50/50 80/77 71/67

73/73

- - - - 91/90 54/52 79179 74173 - - - - 70/70

B-NLI T1/72 66/68 69/68 65/66 73/74 72/73 70/72 - 69/70 70/71 - N/A  68/70 68/70 72/73 T4/72
AYA

XCOPA - - 87/84 - - 82/83 87/87 88/88 - 56/56 - 79/83 86/83 -  84/82 86/85 85/84 86/84

XStoryCloze 95/92 94/94 83/75 93/91 91/87 94/86 90/82 93/89 93/88 95/90

B-NLI 78179 79179 78/78 78/78 79/80 79180 75175

79179 74175 79179 79179 74175 76/17 77177

Table 3: The (%) accuracy of the models on the human translated (original)/our machine translated datasets. Darker
colors indicate bigger gaps between the models’ performance on human and machine-translated data.

XLM-R

BLOOM:z AYA

‘XCOPA XNLI PAWS-X  XStoryCloze ‘ XCOPA XNLI XStoryCloze ‘ XCOPA XNLI XStoryCloze

95.3
71.5

69.3
82.4

93.3
82.6

98.0
98.8

Pearson corr.
Spearman rank corr.

85.0
89.0

97.8
95.1

98.7
97.3

98.0
81.8

95.3
92.5

90.7
77.0

Table 4: Pearson and Spearman rank correlation between the performance on MLMs on human-translated
(HT)(original data) and machine-translated (MT) data (ours). The high correlations indicate that the perfor-
mance of MLMs on both machine and human-translated data is similar.

may become unreliable or biased.

To answer this question, we compare model
performance on machine and human translated
data. We evaluate all models using the same se-
tups and report accuracy scores on machine and
human translated data in Table 3.3 Our results show
that the difference in performance on machine and
human-translated data is small (on average, about
2.6%). Moreover, this trend is consistent across
all models. In some instances, the models achieve
slightly higher performance on machine-translated
data. We hypothesize that this may be due to the
translationese effect. Conversely, in other cases,
we observe a drop in performance, which might be
caused by low-quality translations. We investigate
this issue in Section 5.2, where we explore methods
such as LLLM-based filtering to detect and reduce
the impact of poor quality MT outputs.

5.1.2 Ranking consistency

Building on the finding that accuracy scores be-
tween machine-translated and human-translated
data are closely aligned, we further assess the reli-
ability of MT-based evaluation by examining the
consistency of model rankings, i.e. whether the rel-
ative performance of a model across different lan-
guages remains stable. Specifically, we want to see
if the accuracy differences observed earlier affect
which languages a model performs better or worse

3Results of XLM-R base are reported in the appendix.

on. To measure this, we compute the average Pear-
son and Spearman rank correlations between model
performances on human and machine-translated
datasets (see Table 4).

The high correlation across all tasks shows that
the rank order of the models’ performance across
different languages using human and machine-
translated data is almost the same. This demon-
strates that machine translated data could reliably
be used to assess the relative differences in model
performance across languages.

5.2 The impact of MT quality

Moreover, we analyze whether the quality of ma-
chine translation, as measured by chrF++, cor-
relates with LLLM performance. In other words,
what matters in this experiment is the consistency
of the correlations between human- vs. machine-
translated data. Table 5 summarizes the numerical
results. The results show no significant correla-
tion in either case. That is, higher MT quality (as
indicated by better chrF++ scores) does not system-
atically correspond to higher model performance.
The pattern suggests that small variations in MT
quality, as captured by the automatic metric, do not
strongly influence LLM accuracy. This further sup-
ports the robustness of using MT for multilingual
evaluation, although it also highlights that chrF++
may not fully capture the aspects of translation
quality that affect downstream performance.
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XLM-R

BLOOMz AYA

| XCOPA  XNLI

PAWS-X  XStoryCloze | XCOPA XNLI XStoryCloze | XCOPA XNLI  XStoryCloze

Pearson Corr.

chrF++ vs. HT 274 10.5 89.3 33 -10.4 -10.4 64.5 41.0 8.2 -18.5

chrF++ vs. MT 30.3 66.2 96.5 8.8 14.5 2.9 66.7 52.1 16.3 11.3
Spearman rank Corr.

chrF++ vs. HT 29.6 244 65.7 16.4 5.7 5.7 68.1 22.7 8.1 -34.6

chrF++ vs. MT 22.6 48.1 82.7 224 18.3 14.7 75.8 55.5 26.1 22.4

Table 5: Average Pearson and Spearman rank correlation between chrf++ scores and human translated (HT) (original

data) and machine-translated data (MT) (ours).

Source (en) Translation (es) Error type (span) Severity

So I’m not really sure why.  Asi que no estoy muy seguro de  Accuracy/omission ("as  Major

I am certain as to the reason  por qué. Estoy seguro de la to")

why. razoén. Fluency/redundancy Minor
("de por qué")

I’'m covering the same stuff. Estoy cubriendo las mismas Accuracy/mistranslation ~ Major

I’m talking about the same  cosas. Estoy hablando de las ("que ellos hicieron")

things they did. mismas cosas que ellos Fluency/grammar ("Es- Minor

hicieron.

toy cubriendo")

Table 6: Examples of the MQM framework output for detected errors in translated XNLI test examples.

5.2.1 LLM-as-a-Judge Evaluation

In the earlier experiments, we observed that for
certain tasks and languages, model performance on
MT data was lower than on HT data. We hypothe-
size that these drops are often linked to lower trans-
lation quality. Automatic metrics such as chrF++,
while useful, may be overly sensitive to minor devi-
ations that are not critical for the downstream task,
resulting in misleadingly low scores.

To better assess translation quality, we employ
an LL.M-as-a-judge approach. Specifically, we use
it to (1) identify and categorize translation errors
in examples where the model makes correct predic-
tions on human translations but fails on machine-
translated versions, and (2) evaluate its potential as
a filtering mechanism to remove low-quality trans-
lations from translated evaluation sets.

To this end, we adopt the Multidimensional Qual-
ity Metrics (MQM) framework from Freitag et al.
(2021). We prompt the LLM evaluator to follow
the evaluation guidelines for the translation task
to detect and classify translation errors into major
and minor categories. The LLM-based evaluation
provides the error span, error type, and error clas-
sification. Major errors (true errors) are generally
easier to detect, whereas minor errors often stem
from minor imperfections in translations, see Ta-
ble 6 for an example.* As our LLM-as-a-judge,

4See Table 2 in Freitag et al. (2021) for an overview of the

we use the Gemma 3 27B model (Gemma Team
et al., 2025), covering over 140 languages, in an
in-context learning setup to evaluate translation
quality.’

In Table 7, we report the average number of
major errors for all predictions (Ave. #Err.) and
for the subset where predictions switch from cor-
rect on HT to wrong on MT (C—W). While the
average error rates for these two categories are
close, C—W shows slightly higher values across
most languages, suggesting that these degraded
translations can be systematically flagged. More-
over, consistently across all tasks and languages,
the most frequent translation error type is accuracy,
including a mistranslation error or omission from
the source sentence. Using this observation, we
filter out examples with more than 2 major errors,
and evaluate the performance of the AYA model
on the higher-quality examples. In Table 8, we
present the percentage of gap reduction between
the models’ performance on HT and MT. Based
on the results, in most cases, after removing low-
quality MT data, the performance gap between MT
and HT data is reduced up to 100%. Our results
indicate that integrating LLM-based quality checks
into MT-based evaluation pipelines can help reduce
evaluation noise and improve the reliability of us-

error categorizations.
SPlease refer to the appendix for the experimental setups.
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ar bg de el es et eu fr hi ht id

it jakomy qu ru sw ta te th tr ur vi zh

XCOPA

Ave. #Err. - - - - - 098 - - - 150082067 - - - 230 - 119129 - 121081 - 0.871.13
C—»W - - - - - 110 - - - 157104057 - - - 252 - 139111 - 141090 - 091 1.37
XStoryCloze
Ave. #FErr. 1.84 - - - 103 - 219 - 138 - 1.18 - - - 169 - 122157 - 204 - - - - 177
C—>W 1.92 - - - 115 - 217 - 142 - 117 - - - 173 - 123183 - 204 - - - - 195
B-NLI
Ave. #Err. 143 1.12098 1.01 096 - - 099142 - - - - - - - 115166 - - 146131 1.62 126153
C—-W 1.531.231.081.06098 - - 107152 - - - - - - - 127172 - - 1.601.39 1.64 1.35 1.67

Table 7: Average number of major errors across languages on AYA model. The first row reports the number
of machine translation errors of all predictions on MT data; the second row reports the number of errors when

predictions switch from correct on HT to wrong on MT.

ar bg de el es et eu fr hi ht id

it jako my qu ru sw ta te th tr ur vi zh

XCOPA - - - - - 00 - - - 00 00 - - - 00 - (250333 - 0000 - 0050
XStoryCloze - - - 00 - [F0125 - [500 - 57500 - - - 125 - 56250125 - 600 - - - - 400
B-NLI 0.0 0.0 0000 - - 0000 - - - - - - - 00 00 - - 0000 0000 00

Table 8: The percentage of gap reduction between HT and MT after filtering out low quality MT examples.

ing MT.
6 Large-scale evaluation results

Having confirmed in Section 5 that our translated
test sets are of a reliable quality, we now move
on to analyze how the MLMs perform on them.
In Figure 1, we summarize the performance of
XLM-R, BLOOMz, and AYA in 196, 168, and 198
languages, categorized by their data scarcity dur-
ing the pre-training of each model as explained in
Section 3.3. We find that the average performance
for all models is similar for high- and mid-resource
languages. Yet, while still above the random base-
line, there is a notable drop in performance for
low-resource and unseen languages. Moreover, we
find that standard deviations across low-resource
languages are larger than high- and mid-resource
ones. This shows that performance across low-
resource languages varies a lot, making the average
score less reliable. Still, performance in unseen lan-
guages is relatively high; for XNLI and PAWS-X,
on average, we obtain +18% and +29% above ran-
dom performance, suggesting cross-lingual knowl-
edge transfer to the unseen languages.

6.1 Representativeness of benchmark
language sets

As each dataset contains a distinct selection of lan-
guages for testing, we study to what extent each of
them provides a reliable estimate for how MLMs
performance will generalize to more languages.

| High Mid Low | Ave
XLM-R
PAWS-X | 89.5/89.6 - /873 - /85.6 | 89.5/85.3
XNLI | 82.2/81.5 79.5/782 744/71.9 | 80.5/72.4
XCOPA | 71.6/71.8 69.6/68.2 66.4/61.7 | 70.3/69.2
XStoryCloze | 85.5/83.1 77.2/78.6 74.1/69.9 | 78.9/77.2
BLOOMz
B-NLI | 72.8/73.0 70.8/702 70.9/68.3 | 72.2/69.8
XCOPA | 76.9/79.0 71.6/67.5 63.0/543 | 73.7/62.3
XStoryCloze | 86.2/87.9 81.1/72.0 79.4/64.5 | 82.8/71.6
AYA
B-NLI | 78.4/77.8 71.7/71.6  73.5/75.5 | 77.4/76.4
XCOPA | 83.65/86.3 84.8/84.6  82.8/79.8 | 83.7/82.0
XStoryCloze | 85.8/89.7  91.0/89.6  85.5/86.4 | 87.0/87.7

Table 9: The average performance of high, mid, and low-
resource languages covered by the original dataset/the
languages covered by our machine-translated datasets.
All results are computed on the machine-translated data.

While we do not cover all the world’s languages,
we compare the averages between the languages
covered by the original datasets and those covered
by our much larger translated datasets that contain
198 languages.

To this end, we split the languages from the orig-
inal datasets based on our resource categorization
reported in Table 1, and report the average perfor-
mance for each category in Table 9. Importantly,
all performance scores are computed on the trans-
lated data. From the results, we observe that for
high and, to some extent, mid-resource languages,
average performance on both language selections
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Figure 1: Average performance across test languages in a zero-shot fine-tuning setup for XLM-R and in a zero-shot
prompting using BLOOMz. Results are categorized per task and data coverage during pretraining as reported in
Table 1. Results across models are not directly comparable as their language categorizations differ.

is similar, making the language coverage from the
original datasets sufficiently representative. Yet,
for low-resource languages, we find a notable dif-
ference, which suggests that the datasets’ language
coverage is not representative of a wider range of
low-resource languages. Specifically, across all
tasks, we tend to overestimate performance, which
can go up to 4.7% and 8.7% accuracy points (for
XCOPA).

7 Conclusions

In this paper, we investigate the use of machine
translation to create large-scale multilingual eval-
uation sets in scenarios where human-translated
data is unavailable. Our experiments show that us-
ing SOTA MT models for evaluation yields results
closely aligned with HT ones, with small average
accuracy differences and high rank correlations,
indicating stable relative performance across lan-
guages. Translation quality, measured by chrF++,
does not strongly predict downstream performance
differences, suggesting that minor variations in
automatic scores are not critical for many tasks.

However, LLM-as-a-judge analysis reveals that ex-
amples where models succeed on HT but fail on
MT often contain more major errors, as such this
method could be used to filter low-quality trans-
lations to reduce evaluation noise. Scaling eval-
uations to nearly 200 languages further reveals
representativeness gaps in existing benchmarks.
For high- and mid-resource languages, original
language selections approximate broader trends
well, but for low-resource languages, they overesti-
mate performance—by up to 8.7 accuracy points
in some cases. This demonstrates that MT-based
evaluation can both expand coverage and uncover
biases in benchmark design. Overall, our findings
indicate that MT, when coupled with targeted qual-
ity control, enables broader, more representative,
and more equitable multilingual evaluation, while
highlighting the need to reassess how language se-
lections in current benchmarks reflect true model
capabilities.
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A Experimental setups

For the implementation of all models, we rely
on the HuggingFace Library (Wolf et al., 2019).
XLM-R large, BLOOMz, and AYA-101 (AYA)
have 330M, 7.1B, and 13B parameters, respec-
tively. Moreover, we have run all the BLOOMz
and AYA experiments on an NVIDIA A100-SXM4
GPU with 40GB memory, and a single NVIDIA
A6000 has been used for the MT and XLM-R ex-
periments with 48GB memory.

XLM-R fine-tuning details For the NLI task,
we have fine-tuned XLM-R with a learning rate
of 2e-5, AdamW optimizer, and a batch size of
32 for 3 epochs. For the PAWS-X task, we have
considered a learning rate of 2e-6, batch size 16
with a warm-up ratio of 0.01 for 3 epochs. For
XCOPA and XStoryCloze tasks, first, we train the
model on the training set of Social IQa (Sap et al.,
2019) and then fine-tune it on the training set of
XCOPA dataset (Gordon et al., 2012). We have
selected a learning rate of 3e-6, batch size of 16
for SIQa and 8 for XCOPA, a warm-up ratio of
0.1, and fine-tune the model for 3 epochs on each
dataset.

BLOOMz and AYA zero-shot prompts For
zero-shot prompting, we constructed the follow-
ing prompts for XNLI, XCOPA and XStorycloze
respectively:

Premise: <premise>

Hypothesis: <hypothesis>

Does the premise entail the hypothesis?
Pick between yes or no.

Premise: <premise>

Option A: <choicel>

Option B: <choice2>

Based on the premise,

<cause/effect> 1is more

Pick between options A and B.
Answer:

which
likely?

Consider the following story:

<story>

Which ending to the story is most likely?
Pick between options A and B:

A: <story_ending1>

B: <story_ending2>

Answer:

B Lessons learned for Machine
Translation

We now also share a few practical lessons learned
from our MT experiments using NLLB to facilitate
the translation of new datasets in future work:

* NLLB tends to skip sentences when translat-
ing paragraphs. Thus, it is important to trans-
late the sentences one by one.

NLLB has difficulty translating short
phrases/names such as names, dates, loca-
tions, etc., because it tends to hallucinate
additional content. This makes it challenging
to translate the answers from QA datasets
such as XQuAD.

NLLB inconsistently chooses to code-switch
to the target language. For instance, when
translating the sentence ‘Sara is asleep’, it can
choose to translate it either to ‘Sara ? farsi’
or ‘fully farsi’. This can be particularly chal-
lenging for retrieval datasets where the answer
does not tend to fully match the context.

While translation quality tends to be similar
for different NLLB model sizes, at least the
3.3B version should be used when translating
to languages that were low-resource, consid-
ering NLLB’s pretraining data.

C Correlation between Chrf++ scores and
translations

See Table 10 and Table 11 for Spearman and Pear-
son correlation results between Chrf++ scores and
performance on human and machine translated data.

D LLM-as-a-judge

Following previous work, we use 3-shot prompting
for this experiment provided in Table 12.
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XLM-R BLOOMz AYA
‘XCOPA XNLI PAWS-X  XStoryCloze ‘ XCOPA XNLI XStoryCloze ‘ XCOPA XNLI XStoryCloze

chrF++ vs. Human translated 29.6 244 65.7 16.4 5.7 5.7 68.1 22.7 8.1 -34.6
chrF++ vs. Machine translated 22.6 48.1 82.7 224 18.3 14.7 75.8 55.5 26.1 224

Table 10: Average Spearman rank correlation between chrf++ scores and human- (original data) and machine-
translated data (ours).

XLM-R BLOOMz AYA
‘ XCOPA XNLI PAWS-X XStoryCloze ‘ XCOPA XNLI XStoryCloze ‘ XCOPA XNLI XStoryCloze
chrF++ vs. Human translated 274 10.5 89.3 33 -10.4 -10.4 64.5 41.0 8.2 -18.5
chrF++ vs. Machine translated 30.3 66.2 96.5 8.8 14.5 2.9 66.7 52.1 16.3 11.3

Table 11: Average Pearson correlation between chrf++ scores and human- (original data) and machine-translated
data (ours).

In-context-learning prompt:

Based on the given source, identify the major and minor errors in this translation. Note that Major
errors refer to actual translation or grammatical errors, and Minor errors refer to smaller imperfections,
and purely subjective opinions about the translation.

Source: 1 do apologise about this, we must gain permission from the account holder to discuss an
order with another person, I apologise if this was done previously, however, I would not be able to
discuss this with yourself without the account holder’s permission.

Translation: Ich entschuldige mich dafiir, wir miissen die Erlaubnis einholen, um eine Bestellung mit
einer anderen Person zu besprechen. Ich entschuldige mich, falls dies zuvor geschehen wire, aber
ohne die Erlaubnis des Kontoinhabers wire ich nicht in der Lage, dies mit dir involvement.

Errors:

Major: accuracy/mistranslation — involvement; accuracy/omission — the account holder

Minor: fluency/grammar — ware; fluency/register — dir

Source: Talks have resumed in Vienna to try to revive the nuclear pact, with both sides trying to gauge
the prospects of success after the latest exchanges in the stop-start negotiations.

Translation: Ve Vidni se ve Vidni obnovily rozhovory o oziveni jaderného paktu, pficemzZe ob¢ partaje
se snazi posoudit vyhlidky na tdspéch po poslednich vyménach v jednanich.

Errors:

Major: accuracy/addition — ve Vidni; accuracy/omission — the stop-start

Minor: terminology/inappropriate for context — partaje

Source: KA W5 & AT R EEZIE N EREEBHRERZFMAL, BiE, B FASR
B PEE, HEBEATF, B R

Translation: Urumqi Home Furnishing Store Channel provides you with the latest business information
such as the address, telephone number, business hours, etc., of high-speed rail, and find a decoration
company, and go to the reviews.

Errors:

Major: accuracy/addition — of high-speed rail; accuracy/mistranslation — go to the reviews
Minor: style/awkward — etc.

Source: {source}
Translation: {translation}
Errors:

Table 12: The prompt used for the llm-as-a-judge experiment.
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Figure 2: The accuracy score of XLM-R model on PAWS-X task across 196 languages.
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Figure 3: The accuracy score of XLM-R model on XNLI task across 196 languages.
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Figure 4: The accuracy score of XLM-R model on XStoryCloze task across 196 languages.

58

=)



Language Performance Language performance Language performance Language performance

ace Arab 50.0 fao Latn li Latn slv_Latn
ace Latn fii Latn
acm_Arab fin_Latn
acq_Arab fon_Latn

aeb Arab fra Latn

IS

smo_Latn
sna_Latn
snd_Arab
som_Latn

lim Latn
lin_Latn
lit_Latn
Imo_Latn
Itg Latn
Itz Latn
lua_Latn
lug Latn
luo Latn

afr_Latn fur_Latn sot_Latn

spa_Latn
srd_Latn
srp_Cyrl

ssw_Latn

ajp_Arab fuv_Latn
aka_Latn gaz_Latn
als Latn gla_Latn
amh_Ethi gle Latn
apc_Arab glg Latn lus_Latn sun_Latn
swe_Latn
swh_Latn
szl _Latn

tam Taml

lvs Latn
mag Deva
mai_Deva
mal_Mlym

arb_Arab grn_Latn
ars_Arab guj Gujr
ary Arab hat Latn
arz_Arab hau Latn
tag Latn
tat_Cyrl
tel_Telu
tgk_Cyrl
tgl Latn
azj Latn hye Armn mos_Latn tha Thai
bak Cyrl ibo_Latn
bam_Latn ilo_Latn
ban_Latn ind_Latn
bel Cyrl isl_Latn
bem Latn ita_Latn

asm Beng heb Hebr mar_Deva

IS
2
~

min_Latn
mkd Cyrl
mit_Latn

ast_Latn hin_Deva
awa_Deva hne Deva
ayr_Latn b hrv_Latn

azb Arab hun Latn mni_Beng

tpi_Latn
tsn_Latn

mya_Mymr
nid_Latn
tso _Latn
tuk Latn
tum_Latn
tur_Latn
twi_Latn
uig Arab
ukr_Cyrl
umb_Latn
urd_Arab
uzn_Latn

nno Latn
nob_Latn
npi_Deva
nso_Latn
nus_Latn

ben Beng jav_Latn
bho_Deva jpn_Jpan
bjn_Arab ! kab_Latn
bjn Latn kac Latn

nya Latn

bos Latn kam Latn oci_Latn

bug Latn kan_Knda pag Latn
bul_Cyrl kas_Arab

cat_Latn kas Deva

pan_Guru
pap_Latn
pbt Arab
pes Arab
plt_Latn
pol_Latn
por_Latn

ceb Latn kat Geor vec Latn

ces Latn kaz Cyrl vie Latn
cik_Latn kbp_Latn
ckb_Arab P kea_Latn
crh Latn khk Cyrl
cym Latn khm Khmr
dan_Latn kik_Latn
deu_Latn kin_Latn
dik_Latn kir_Cyrl
dyu Latn kmb Latn
ell Grek kmr_Latn
eng Latn knc_Arab

war_Latn
wol_Latn
xho Latn
dd_Hebr
or_Latn

prs_Arab

quy Latn
ue_Hant
zho_Hans
zho Hant

ron_Latn
run_Latn
rus Cyrl

3
—
2
S

sag Latn zsm Latn

san_Deva zul Latn

scn_Latn
shn_Mymr

sin_Sinh

slk_Latn

epo_Latn knc_Latn
est_Latn kon_Latn
eus Latn

ewe Latn lao_Laoo

Figure 5: The accuracy score of XLM-R model on XCOPA task across 196 languages.
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nob Latn
npi_Deva

66.83

urd_Arab

_uzn Latn

vec_Latn

66.49

66.73

69.76

66.59

70.86

vie Latn
war_Latn

73.01

fao_Latn lus_Latn
fif Latn lvs Latn

tgl_Latn
tpi_Latn

arb_Arab 724 hin_Deva nso_Latn 68.76 wol_Latn

ars_Arab 69.16 hne Deva nus_Latn xho_Latn

ary Arab 68.34 hrv_Latn 66.85 nya_Latn yor_Latn 68.04
arz_Arab 68.82 hun Latn 67.15 oci_Latn ue Hant

asm_Beng 68.16 ibo_Latn pag Latn zho Hans 72.18
ast_Latn ilo_Latn zho Hant 68.14
awa_Deva ind_Latn pbt_Arab zsm_Latn 71.76
ayr_Latn isl_Latn pes_Arab zul_Latn 67.01
azb Arab ita_Latn plt_Latn

azj Latn

bam_Latn

ban_Latn

bem Latn 67.09 kam Latn

ben Beng 70.46 kan Knda

bho Deva 68.62 kas Arab run_Latn 67.6

bjn_Arab sag_Latn

bin_Latn 67.82 Kbp_Latn

bos Latn 67.37 kea Latn

bug Latn slk_Latn 66.69

cat_Latn slv_Latn 67.19

ceb Latn

ces Latn

cik Latn

ckb_Arab

crh_Latn sot_Latn

cym_Latn spa_Latn

dan_Latn lim_Latn

deu Latn lin_Latn

dik_Latn

dyu Latn

eng_Latn

epo_Latn

est Latn lua Latn tam_Taml

eus Latn 68.86 lug Latn tag Latn

ewe Latn 66.53 luo_Latn tel Telu

66.89

fin_Latn mag Deva

tsn Latn

67.78

fon Latn 66.57 mai_Deva 67.58

tso_Latn

fra_Latn 73.13 mal_Mlym 71.36

uk_Latn

t

67.27

Figure 6: The accuracy score of BLOOMz model on B-NLI task across 168 languages.
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ace Arab Latn 67.57 mar_Deva 73.2 tum_Latn 64.06

ace Latn 60.29 fuv_Latn min_Latn 64.46 tur_Latn
acm_Arab 81.07 Latn mit_Latn 57.45

acq_Arab 85.31 Latn mni_Beng

aeb_Arab 65.25 Latn mos_Latn

afr_Latn Latn mri_Latn

ajp_Arab Latn nid Latn 64.06 uzn Latn

aka_Latn i Gujr 79.75 nno_Latn 60.62 vec_Latn 75.65
als Latn Latn 60.49 nob _Latn 61.48 vie Latn 89.81

apc_Arab 80.54 Latn npi_Deva 70.75 war_Latn

arb_Arab 88.02 hin_Deva nso_Latn 65.65 wol Latn

ars_Arab 86.1 hne Deva nus_Latn xho_Latn 65.65

ary Arab 73.86 hrv_Latn nya_Latn 68.3 yor_Latn 7154
arz_Arab 84.05 hun_Latn oci_Latn 82.26 ue_Hant

asm Beng 79.00 ibo_Latn

ast_Latn ilo_Latn pap Latn 64.33
awa Deva 89.54 pbt_Arab zsm_Latn 88.48
aylan | 685 | isitam | 2ul Latn 66.51

azb_Arab ita_Latn 82.73 plt_Latn
azj Latn av_Latn 64.39 ol Latn
bam_Latn 56.92 kab Latn por_Latn
ban_Latn 57.58 kac_Latn prs_Arab
bem_Latn kam_Latn quy_Latn

ben_Beng fon_Latn
bho Deva run_Latn
bjn_Arab sag Latn
bjn_Latn 72.14 kbp Latn san_Deva
bos_Latn 57.38 kea_ Latn scn_Latn
bug Latn kik_Latn 57.45 slk_Latn
cat _Latn kin_Latn slv_Latn
ceb Latn smo_Latn

ces_Latn sna_Latn
cik_Latn snd_Arab

ckb_Arab som_Latn

crh_Latn

66.71

sot_Latn 65.19
cym Latn lij Latn 64.39 spa_Latn 91.0
dan_Latn lim_Latn 60.23 srd_Latn 63.4
deu_Latn lin_Latn ssw_Latn 59.43

dik Latn sun_Latn 63.4
7055 swe Latn
szl Latn

Itg Latn swh_Latn
Itz_Latn

eus Latn
ewe Latn
fao Lain

i
fin_Latn
fon Latn tso_Latn

fra_Latn mal_Mlym tuk Latn

eng Latn

Figure 7: The accuracy score of BLOOMz model on XStoryCloze task across 168 languages.
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ace Arab fur_Latn mar_Deva 71.68 tum_Latn 66.49

ace Latn fuv_Latn min_Latn 67.09 tur_Latn

acm_Arab 68.54 gaz Latn

acq Arab ga_Latn

aeb Arab gle Latn 66.51 mos Latn 66.75 umb Latn

afr_Latn glg Latn 71.28 mri_Latn 66.83 urd Arab

ajp_Arab grn_Latn uzn_Latn

aka_Latn quiGur | 7048 | motam | 6668 | veciam | ees0 |
| nob tam |

7301

als Latn hat Latn nob _Latn

apc_Arab 67.66 hau Latn npi_Deva 70.86 war_Latn

arb_Arab 724 hin_Deva 719 nso_Latn 68.76 wol Latn

ars_Arab 69.16 hne Deva nus_Latn xho_Latn 66.83
ary Arab 68.34 hrv_Latn 66.85 nya_Latn yor_Latn 68.04
arz_Arab 68.82 hun_Latn 67.15 oci_Latn ue_Hant 70.38
asm_Beng 68.16 ibo_Latn 68.32 pag Latn zho Hans 72.18
ast Latn 67.84 ilo_Latn pap_Latn zho Hant 68.14
awa Deva ind_Latn zsm_Latn 71.76
ayr_Latn isl_Latn pes_Arab zul_Latn 67.01

| sl tam | | pes Arab |
azb Arab
azi Latn
bam_Latn
ban Latn
bem_Latn 67.09 kam_Latn
ben_Beng 70.46 kan_Knda
bho Deva 68.62 kas Arab run Latn 67.6
bjn_Arab sag Latn

67.82
67.37

73.47

bjn_Latn
bos_Latn
bug_Latn

kbp Latn
kea_ Latn
kik_Latn
kin Latn
kmb_Latn
kmr_Latn
knc_Arab
knc_Latn

68.02

cat Latn
ceb Latn
ces Latn
cik_Latn
ckb_Arab
crh Latn

66.91

kon Latn

san_Deva
scn_Latn
slk_Latn

66.69
67.19

67.92

slv_Latn

smo_Latn

sna_Latn
snd_Arab
som_Latn

sot_Latn

cym Latn li Latn
lim_Latn
lin_Latn

lit Latn

dan_Latn
deu_Latn
dik Latn
dyu Latn
eng Latn

68.62

Imo_Latn
Itg Latn

72.63

spa_Latn
srd_Latn
ssw_Latn
sun_Latn

swe Latn

70.94

swh Latn

epo_Latn ltz_Latn szl Latn
est_Latn lua_Latn tam_Taml
eus Latn 68.86 lug Latn taq Latn
ewe Latn 66.53 luo_Latn tel Telu

fao Latn lus_Latn

tgl Latn

fij_Latn lvs_Latn tpi_Latn 66.89
fin_Latn mag Deva tsn_Latn 67.78
fon Latn 66.57 mai_Deva 67.58 tso_Latn 67.27
fra_Latn 73.13 mal_Mlym 71.36 tuan__

Figure 8: The accuracy score of BLOOMz model on XCOPA task across 168 languages.
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G Full Results for AYA
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Language performance

slv_Latn
smo_Latn
sna_Latn
snd_Arab
som_Latn

lij Latn
lim_Latn
lin_Latn
lit_ Latn
Imo_Latn
Itg Latn
ltz_Latn
lua_Latn

fao Latn
fif Latn
fin_Latn
fon Latn

ace Arab
ace Latn
acm_Arab
acg Arab
aeb Arab
afr_Latn
ajp_Arab
aka Latn

fra_Latn

sot_Latn
spa_Latn
srd_Latn
srp_Cyrl

fur_Latn
fuv_Latn
gaz_Latn

als Latn gla_Latn lug Latn

92.0

93.0

amh_Ethi gle Latn luo_Latn ssw_Latn
apc_Arab glg Latn lus_Latn sun_Latn
arb_Arab grn_Latn swe_Latn
ars_Arab : quj_Gur
ary Arab hat Latn
arz_Arab hau_Latn mal_Mlym tam_Taml
asm_Beng heb Hebr mar_Deva 90. tag_Latn

min_Latn
mkd_Cyrl
mit Latn

hin_Deva
hne Deva

ast_Latn
awa_Deva

ayr Latn hrv_Latn

azb Arab hun_Latn mni_Beng

azj_Latn hye Armn mos_Latn
bak Cyr ibo_Latn tir_Ethi

nid Latn 92.0
nno_Latn 91.0 tso_Latn
tuk_Latn

bam Latn ilo Latn

ban Latn ind Latn
bel Cyrl
bem Latn
ben_Beng
bho Deva
bjn Arab
bjn_Latn
bos_Latn
bug_Latn
bul Cyrl

is|_Latn

ita_Latn
jav_Latn
jpn_Jpan
kab Latn
kac Latn

nob_Latn

900 | nsotam |

kam_Latn
kan_Knda
kas Arab

91.0

92.0

cat Latn kas Deva uzn Latn 90.0
ceb Latn kat Geor pbt_Arab vec Latn 89.0

vie Latn
plt_Latn
pol Latn 93.0

por_Latn 93.0 xho Latn
prs_Arab dd_Hebr
900 | wnian |

kaz_Cyrl
kbp _Latn
kea Latn
khk Cyrl
cym Latn khm_Khmr
dan_Latn kik_Latn
deu_Latn d kin_Latn
dik Latn kir Cyrl

ces Latn
cik_Latn
ckb Arab
crh Latn

dyu Latn kmb_Latn

ell_Grek 93.0 kmr_Latn
eng_Latn 92.0 knc_Arab
epo_Latn 93.0 knc_Latn

est Latn kon Latn

sin_Sinh

eus Latn kor Hang

ewe Latn lao_Laoo slk_Latn

Figure 9: The accuracy score of AYA on XStoryCloze task across 198 languages.
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ace Arab fao Latn li Latn slv_Latn 86.2

ace Latn fij_Latn lim_Latn “
acm_Arab fin_Latn m lin_Latn
acq_Arab fon_Latn lit_Latn m
aeb Arab fra_Latn ¥ Imo_Latn
afr_Latn ¥ fur_Latn Itg Latn
ajp_Arab fuv_Latn Itz_Latn 88.4
aka_Latn gaz_Latn lua_Latn
als_Latn A gla_Latn lug_Latn 85.4
amh_Ethi gle Latn luo Latn
apc_Arab glg Latn 4 lus_Latn y
arb_Arab grn_Latn lvs_Latn 87.0
ars_Arab guj Gujr 4 mag Deva
ary_Arab hat_Latn ! mai_Deva
arz_Arab

asm_Beng

. tag Latn
ast_Latn hin_Deva min_Latn
awa Deva hne_Deva | mkdcyl | 854 | telTeu |
ayr_Latn
azb Arab hun_Latn y mni_Beng
azj_Latn o hye Armn mos_Latn
bak_Cyrl ibo_Latn
bam Latn ilo_Latn
ban_Latn ind_Latn nid_Latn 86.8
bel Cyrl nno Latn
bem Latn

0
[
N

isl_Latn

ita_Latn tuk Latn
85.4
86.6

834 | nsolam |
826 | paglan |

jav_Latn
jpn_Jpan
kab_Latn
kac Latn

ben Beng
bho_Deva
bjn_Arab
bjn Latn
bos Latn

nob_Latn

kam Latn

khk Cyrl
khm Khmr
kik_Latn
deu_Latn kin_Latn
dik_Latn kir_Cyrl

crh_Latn por_Latn 88.4 xho_Latn

bug Latn kan_Knda
bul_Cyrl kas_Arab urd_Arab 86.0
cat_Latn kas_Deva uzn_Latn 83.0
ceb Latn vec Latn 83.6
ces Latn vie_Latn
cik Latn
ckb_Arab pol_Latn 85.4 wol_Latn
|k oy |
|k khr |

cym Latn 82.8 dd_Hebr
quy Latn
| wscoyn | 850 | zhoHant |

dan_Latn

prs_Arab

dyu Latn kmb Latn rus Cyrl

ell Grek 85.0 kmr_Latn 84.4
eng Latn 89.6 knc_Arab

epo_Latn knc_Latn

est_Latn kon_Latn

| 84 | sinsin |

slk_Latn

eus Latn

ewe Latn lao_Laoo

Figure 10: The accuracy score of AYA on XCOPA task across 198 languages.
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ace Arab
ace Latn
acm_Arab
acq_Arab
aeb Arab
afr_Latn
ajp_Arab
aka_Latn
als_Latn
amh_Ethi
apc_Arab
arb_Arab
ars_Arab
ary Arab
arz_Arab
asm_Beng
ast_Latn
awa_Deva
ayr_Latn
azb Arab
azj Latn
bak Cyrl
bam_Latn
ban_Latn
bel Cyrl
bem Latn
ben Beng
bho_Deva
bjn_Arab
bjn Latn
bos Latn
bug Latn
bul_Cyrl

Performance Language performance

fao Latn

fi_Latn

fin_Latn
fon_Latn

fra_Latn

fur_Latn

fuv_Latn
gaz_Latn
gla_Latn
gle Latn
dlg Latn
grn_Latn
guj Gujr
hat Latn
hau Latn
heb Hebr
hin_Deva
hne Deva
hrv_Latn
hun Latn

Language performance Language performance

li Latn slv_Latn 79.78
lim Latn smo_Latn

lin_Latn 77.94
lit_Latn 78.46 snd_Arab

Imo_Latn som Latn
Itg Latn sot_Latn
Itz_Latn spa_Latn
lua_Latn srd_Latn
lug Latn srp_Cyrl
luo Latn

ssw_Latn
lus_Latn sun_Latn
lvs Latn
mag Deva
mai_Deva

mal_Mlym

swe_Latn
swh_Latn
szl _Latn

tam Taml | 7745 |

mar_Deva tag Latn
tat_Cyrl
tel_Telu
tgk_Cyrl

mni_Beng tgl Latn

min_Latn
mkd Cyrl
mit_Latn

hye Armn
ibo_Latn
ilo_Latn

ind_Latn 78.46

isl_Latn

mos_Latn tha Thai
mri_Latn tir_Ethi
mya_Mymr tpi_Latn
nid_Latn tsn_Latn

nno Latn 77.56 tso _Latn

tuk Latn

npi_Deva tum_Latn

pn_Jpan
kab_Latn
kac Latn
kam Latn
kan_Knda
kas_Arab

[
5]

cat_Latn
ceb Latn
ces Latn
cik_Latn
ckb_Arab
crh Latn
cym Latn
dan_Latn

kas Deva
kat Geor
kaz Cyrl
kbp_Latn

>
7]
<]
—
I3
E

tur_Latn

twi_Latn

uig Arab

ukr_Cyrl _
umb_Latn
urd_Arab
pap_Latn uzn_Latn
pbt Arab vec Latn
pes Arab vie Latn
plt_Latn war_Latn

nus_Latn
nya Latn
oci_Latn
pag Latn
pan_Guru

kea_Latn

pol_Latn wol_Latn

khk Cyrl

por_Latn xho Latn

khm Khmr
kik_Latn

deu_Latn
dik_Latn
dyu Latn
ell Grek
eng Latn
epo_Latn
est_Latn
eus Latn
ewe Latn

kin_Latn
kir_Cyrl
kmb Latn
kmr_Latn
knc_Arab
knc_Latn
kon_Latn

77.09

lao_Laoo

prs_Arab dd_Hebr
quy Latn or_Latn
ron_Latn ue_Hant

run_Latn

rus Cyrl 79.12 zho Hant

sag Latn

zho Hans

zsm Latn

san_Deva zul Latn

scn_Latn
shn_Mymr

sin_Sinh

slk_Latn

Figure 11: The accuracy score of AYA on B-NLI task across 198 languages.
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H Full Results for XLM-R base

Language Performance Language Performance Language Performance Language Performance

slv_Latn
smo_Latn
sna_Latn
snd_Arab
som_Latn

lij Latn
lim_Latn

ace Arab fao Latn
ace_Latn fif Latn
acm_Arab fin_Latn lin_Latn
acq Arab fon Latn lit_Latn
aeb Arab fra_Latn Imo_Latn
afr_Latn fur_Latn Itg Latn
ajp_Arab fuv_Latn ltz_Latn
aka_Latn gaz_Latn lua_Latn
als Latn gla Latn lug Latn
amh_Ethi gle Latn
apc_Arab glg Latn
arb_Arab grn_Latn
ars_Arab guj Gujr
ary Arab hat Latn
arz_Arab hau_Latn
asm_Beng heb Hebr
ast_Latn hin_Deva
awa_Deva hne Deva
ayr_Latn hrv_Latn

sot_Latn

spa_Latn 79.92

srd_Latn
stp Cyrl 77.96

luo_Latn ssw_Latn

sun_Latn
swe_Latn
swh _Latn
szl Latn

lus_Latn
lvs Latn
mag Deva
mai_Deva
tam_Taml
tag Latn
tat_Cyrl
tel_Telu
tgk Cyrl
tgl Latn
tha_Thai

mar_Deva
min_Latn
mkd_Cyrl
mit Latn
azb Arab hun_Latn
azj Latn hye Armn
bak_Cyrl ibo_Latn mri_Latn
bam Latn ilo Latn mya Mymr

ban Latn ind Latn 79.22 nid Latn

bel Cyrl is|_Latn nno_Latn

mos_Latn

tpi_Latn
tsn Latn
tso_Latn

bem Latn ita_Latn 78.7 nob_Latn 80.38 tuk_Latn

npi_Deva
nso_Latn
nus Latn

ben_Beng jav_Latn
bho Deva ipn_Jpan
bjn_Arab kab Latn
bjn_Latn kac Latn
bos_Latn kam_Latn oci_Latn
bug_Latn kan_Knda pag_Latn
bul_Cyrl 79.02 kas Arab pan_Guru
cat Latn 78.34 kas Deva pap Latn
pbt_Arab
pes_Arab
plt_Latn war_Latn
pol Latn wol Latn
por_Latn xho_Latn
prs_Arab dd_Hebr
quy_Latn or_Latn
ron_Latn ue_Hant
run_Latn zho Hans
rus_Cyrl zho Hant
sag_Latn zsm_Latn

san_Deva zul_Latn
scn_Latn
shn_Mymr

tum_Latn
tur_Latn
twi_Latn
uig Arab
ukr_Cyrl
umb_Latn
urd Arab
uzn Latn

nya_Latn

vec Latn
vie Latn

ceb Latn kat Geor
ces Latn kaz_Cyrl
cik_Latn kbp_Latn
ckb Arab kea Latn
crh Latn khk Cyrl
cym Latn khm_Khmr
dan_Latn kik_Latn

deu_Latn kin_Latn

dik Latn kir Cyrl

dyu Latn kmb_Latn
ell_Grek kmr_Latn
eng_Latn knc_Arab
epo_Latn knc_Latn
est Latn kon Latn

eus Latn sin_Sinh

ewe Latn lao_Laoo slk_Latn

Figure 12: The accuracy score of XLM-R base on XNLI task across 196 languages.
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fao Latn li Latn som_Latn
fii Latn
fin_Latn
fon Latn

fra Latn

ace Arab
sot_Latn
spa_Latn
srd_Latn
srp_Cyrl

lim_Latn
lin_Latn
lit_Latn
Imo_Latn
Itg Latn
Itz Latn
lua_Latn
lug_Latn
luo Latn

ace Latn
acm_Arab
acq_Arab
aeb Arab
afr_Latn
ajp_Arab
aka_Latn
als_Latn
amh_Ethi
apc_Arab
arb_Arab
ars_Arab
ary Arab
arz_Arab

74.39

fur_Latn ssw_Latn
sun_Latn
swe_Latn
swh Latn

szl Latn

fuv_Latn
gaz_Latn
gla_Latn
gle Latn

75.18

glg Latn lus_Latn tam_Taml
tag Latn
tat_Cyrl
tel_Telu
tgk Cyrl
tgl Latn
tha_Thai
tir_Ethi
tpi_Latn
tsn Latn
tso_Latn
tuk_Latn
tum_Latn
tur_Latn
twi_Latn
uig Arab
ukr_Cyrl
umb_Latn
urd_Arab
uzn Latn

lvs Latn
mag Deva
mai_Deva

grn_Latn
guj Gujr
hat_Latn
hau Latn
heb Hebr
hin_Deva
hne Deva
hrv_Latn
hun_Latn

min_Latn
mkd Cyrl
mit_Latn
mni_Beng
mos _Latn

asm_Beng
ast_Latn
awa_Deva
ayr_Latn
azb Arab
azj Latn
bak Cyrl
bam_Latn
ban_Latn
bel Cyrl
bem Latn
ben Beng
bho_Deva
bjn_Arab
bjn Latn
bos Latn
bug Latn
bul_Cyr
cat_Latn
ceb Latn

mri_Latn
nid_Latn
nno_Latn
nob_Latn
nso_Latn

hye Armn
ibo_Latn
ilo_Latn
ind_Latn
is|_Latn

74.45

76.77 76.04

nus Latn
nya Latn
oci_Latn
pag_Latn
pap Latn
pbt Arab
pes_Arab
plt_Latn
pol_Latn
por Latn

ita_Latn
jav_Latn
jpn_Jpan
kab_Latn
kac Latn

74.06
74.78

vec Latn
vie Latn
war_Latn
wol_Latn
xho_Latn
dd Hebr
or_Latn
ue Hant
zho Hans
zho Hant

kam Latn
kan_Knda
kas_Arab
kas Deva
kat Geor
kaz Cyrl
kbp_Latn
kea_Latn
khk Cyrl
khm Khmr
kik_Latn
kin_Latn
kir_Cyrl
kmb Latn
kmr_Latn
knc_Arab
knc_Latn
kon_Latn

prs_Arab
quy Latn
ron_Latn
run_Latn
rus Cyrl

ces Latn
cik_Latn
ckb_Arab
crh Latn
cym Latn
dan_Latn
deu_Latn
dik_Latn
dyu Latn
ell Grek
eng Latn
epo_Latn
est_Latn
eus Latn
ewe Latn

76.9

75.45

74.72

zsm Latn
zul Latn

sag Latn
san Deva
scn_Latn
shn_Mymr
sin_Sinh
slk_Latn
slv_Latn
smo_Latn
sna Latn
snd_Arab

lao_Laoo

Figure 13: The accuracy score of XLLM-R base on XStoryCloze task across 196 languages.
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ace Arab fao Latn li Latn slv_Latn
smo_Latn
sna_Latn
snd_Arab

som Latn

lim_Latn
lin_Latn
lit_Latn
Imo_Latn
Itg Latn
Itz Latn
lua_Latn
lug_Latn
luo Latn

ace Latn fii Latn
acm_Arab fin_Latn
acq_Arab fon_Latn
aeb Arab fra Latn
afr_Latn fur_Latn
ajp_Arab fuv_Latn
aka_Latn gaz_Latn
als_Latn gla_Latn
amh_Ethi gle Latn
apc_Arab glg Latn

sot_Latn
spa_Latn
srd_Latn
srp_Cyrl
ssw_Latn

lus_Latn sun_Latn

swe_Latn
swh_Latn
szl _Latn
tam_Taml

lvs Latn
mag Deva
mai_Deva

arb_Arab grn_Latn
ars_Arab guj Gujr
ary Arab hat_Latn
arz_Arab hau Latn
tag Latn
min_Latn tat_Cyrl
mkd_Cyrl tel Telu
mit_Latn tgk_Cyrl
tgl Latn
tha Thai
tir_Ethi
tpi_Latn

asm Beng heb Hebr mar_Deva
ast_Latn hin_Deva
awa_Deva hne Deva
ayr_Latn hrv_Latn
azb Arab hun_Latn
azj Latn hye Armn mos_Latn
bak Cyrl ibo_Latn
bam_Latn ilo_Latn
ban_Latn ind_Latn
bel Cyrl is|_Latn
bem Latn ita_Latn
ben Beng jav_Latn
bho_Deva jpn_Jpan
bjn_Arab kab_Latn
bjn Latn kac Latn

mri_Latn
mya_Mymr
nid_Latn tsn_Latn
nno Latn tso _Latn
nob _Latn tuk _Latn
npi_Deva tum_Latn
nso_Latn tur_Latn
nus_Latn twi_Latn
nya Latn uig Arab
ukr_Cyrl
umb_Latn
urd_Arab

bos Latn kam Latn oci_Latn
bug Latn kan_Knda pag Latn
bul_Cyrl kas_Arab pan_Guru

uzn_Latn
vec Latn
vie_Latn
war_Latn
wol_Latn
xho Latn
dd Hebr
quy Latn or_Latn
ron_Latn ue Hant
run_Latn zho_Hans
rus Cyrl zho Hant

sag Latn zsm Latn 91.25

zul Latn

cat_Latn kas Deva pap_Latn
pbt Arab
pes Arab
plt_Latn
pol_Latn
por_Latn
prs_Arab

ceb Latn kat Geor
ces Latn kaz Cyrl
cik_Latn kbp_Latn
ckb_Arab kea_Latn
crh Latn khk Cyrl
cym Latn khm Khmr
dan_Latn kik_Latn

deu_Latn kin_Latn

dik_Latn kir_Cyrl

dyu Latn kmb Latn
ell Grek kmr_Latn
eng_Latn knc_Arab
epo_Latn knc_Latn
est_Latn kon_Latn shn_Mymr
eus Latn sin_Sinh
ewe Latn lao_Laoo slk_Latn

san_Deva
scn_Latn

Figure 14: The accuracy score of XLM-R base on PAWS-X task across 196 languages.
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I ChrF++ scores per language

Language Chrf++ score Language Chrf++ score Language Chrf++ score Language Chrf++ score

ace Arab fif Latn lim Latn smo_Latn
ace_Latn fin_Latn lin_Latn sna_Latn
acm_Arab fon Latn lit_Latn snd_Arab
acg Arab fra Latn Imo_Latn som_Latn

aeb Arab fur_Latn Itg Latn sot_Latn

Itz Latn spa_Latn
lua_Latn srd_Latn

lug_Latn srp_Cyrl

fuv_Latn
gaz_Latn
gla_Latn

afr_Latn
ajp_Arab
aka Latn

als Latn gle Latn luo Latn ssw_Latn
amh_Ethi glg Latn lus Latn sun_Latn
apc_Arab grn_Latn
arb_Arab guj Gujr
ars_Arab hat Latn
ary Arab hau Latn
arz_Arab heb Hebr mar_Deva tag Latn

asm_Beng hin_Deva 56.72 min_Latn tat_Cyrl

ast_Latn hne Deva mkd Cyrl tel Telu

lvs Latn swe Latn
mag Deva swh Latn
mai_Deva szl_Latn

mal_Mlym tam Taml

awa Deva hrv_Latn
ayr Latn hun Latn
azb Arab hye Armn
azj Latn ibo_Latn mri_Latn tir_Ethi

bak_Cyrl ilo_Latn mya_Mymr tpi_Latn

bam Latn ind_Latn nid Latn 57.1 tsn_Latn

ban Latn isl_Latn nno_Latn tso _Latn

bel Cyrl ita_Latn nob_Latn tuk Latn

bem Latn jav_Latn npi_Deva tum_Latn

ben_Beng jpn_Jpan nso_Latn tur_Latn
bho Deva kab Latn nus Latn twi_Latn

bjn Arab kac Latn uig Arab

bjn_Latn kam_Latn ukr_Cyrl

bos Latn kan_Knda umb_Latn

bug_Latn kas_Arab pan_Guru urd_Arab

bul_Cyrl 61.75 kas Deva pap Latn uzn Latn

cat Latn 64.34 kat Geor pbt Arab
ceb Latn 57.88 kaz_Cyrl pes_Arab
ces_Latn kbp Latn plt_Latn war_Latn
cik_Latn kea_Latn pol_Latn wol_Latn

ckb Arab khk Cyrl por Latn xho Latn

crh Latn khm Khmr prs_Arab dd Hebr

cym Latn kik_Latn quy Latn or_Latn

dan_Latn kin_Latn ron_Latn ue Hant

deu Latn kir_Cyrl run_Latn zho_Hans

dik Latn kmb Latn zho Hant

dyu Latn kmr_Latn zsm Latn
ell_Grek knc_Arab zul Latn

epo_Latn knc_Latn scn_Latn
est Latn kon_Latn shn_Mymr

tgl Latn
tha Thai

mni_Beng
mos_Latn

nya Latn

oci_Latn
pag Latn

g
~
(9]

vec Latn

vie Latn 60.12

rus Cyrl
sag Latn

san_Deva

sin_Sinh
slk_Latn 55.71

slv_Latn

eus Latn

ewe Latn lao_Laoo
fao Latn li Latn

mit_Latn

Figure 15: Chrf++ scores for the selected languages.
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J Language coverage

‘ ‘ Category ‘ Languages

High arb_Arab , bul_Cyrl, dan_Latn , deu_Latn , ell_Grek , eng_Latn , fin_Latn ,
fra_Latn , heb_Hebr , hun_Latn , ind_Latn , ita_Latn , jpn_Jpan , kor_Hang ,
nld_Latn , nob_Latn , pes_Arab , pol_Latn , por_Latn , ron_Latn , rus_Cyrl ,
spa_Latn , tha_Thai , ukr_Cyrl, vie_Latn , zho_Hans
Mid als_Latn , azj_Latn , bel_Cyrl , ben_Beng , cat_Latn , ces_Latn , est_Latn ,
glg_Latn, hin_Deva, hrv_Latn , hye_Armn, isl_Latn , kan_Knda , kat_Geor ,
kaz_Cyrl , khk_Cyrl, lit_Latn , lvs_Latn , mal_Mlym , mar_Deva , mkd_Cyrl,
npi_Deva , sin_Sinh , slk_Latn , slv_Latn , srp_Cyrl , swe_Latn , tam_Taml ,
tel_Telu , tgl_Latn , tur_Latn , urd_Arab , zho_Hant , zsm_Latn
Low afr_Latn , amh_Ethi , asm_Beng , bos_Latn , ckb_Arab , cym_Latn , epo_Latn ,
eus_Latn, gaz_Latn, gla_Latn, gle_Latn, guj_Gujr, hau_Latn , jav_Latn
khm_Khmr , kir_Cyrl, lao_Laoo , mya_Mymr , pan_Guru , pbt_Arab , plt_Latn ,
san_Deva , snd_Arab , som_Latn , sun_Latn , swh_Latn , uig_Arab , uzn_Latn ,
xho_Latn , ydd_Hebr
Unseen ace_Arab , ace_Latn , acm_Arab , acq_Arab , aeb_Arab , ajp_Arab , aka_Latn ,
apc_Arab , ars_Arab , ary_Arab, arz_Arab , ast_Latn , awa_Deva , ayr_Latn ,
azb_Arab , bak_Cyrl , bam_Latn , ban_Latn , bem_Latn , bho_Deva , bjn_Arab ,
bjn_Latn , bug_Latn, ceb_Latn , cjk_Latn , crh_Latn , dik_Latn, dyu_Latn ,
ewe_Latn , fao_Latn , fij_Latn , fon_Latn , fur_Latn , fuv_Latn , grn_Latn ,
hat_Latn , hne_Deva , ibo_Latn , ilo_Latn , kab_Latn , kac_Latn , kam_Latn ,
kas_Arab , kas_Deva , kbp_Latn , kea_Latn , kik_Latn , kin_Latn , kmb_Latn ,
kmr_Latn , knc_Arab , knc_Latn , kon_Latn , lij_Latn , lim_Latn , lin_Latn ,
Imo_Latn, Itg_Latn, Itz_Latn , lua_Latn , lug_Latn , luo_Latn , lus_Latn,
mag_Deva , mai_Deva , min_Latn , mlt_Latn , mni_Beng , mos_Latn , mri_Latn ,
nno_Latn , nso_Latn , nus_Latn , nya_Latn , oci_Latn , pag_Latn , pap_Latn ,
prs_Arab , quy_Latn , run_Latn , sag_Latn, scn_Latn , shn_Mymr , smo_Latn ,
sna_Latn , sot_Latn , srd_Latn , ssw_Latn , szl_Latn , tag_Latn , tat_Cyrl ,
tgk_Cyrl, tir_Ethi, tpi_Latn , tsn_Latn , tso_Latn , tuk_Latn , tum_Latn,
twi_Latn , umb_Latn , vec_Latn , war_Latn , wol_Latn , yor_Latn , yue_Hant ,
zul_Latn

XLM-R

High arb_Arab , cat_Latn, eng_Latn , fra_Latn , ind_Latn , por_Latn , spa_Latn ,
vie_Latn , zho_Hans
Mid | ben_Beng, eus_Latn, hin_Deva , mal_Mlym , tam_Taml , urd_Arab , zho_Hant’
Low aka_Latn , asm_Beng , bam_Latn , bho_Deva , fon_Latn , guj_Gujr, ibo_Latn ,
kan_Knda , kik_Latn , kin_Latn , lin_Latn , mar_Deva , npi_Deva , nso_Latn ,
sot_Latn , swh_Latn , tel_Telu , wol_Latn , xho_Latn , yor_Latn , zul_Latn
Unseen ace_Arab , ace_Latn , acm_Arab , acq_Arab , aeb_Arab , afr_Latn , ajp_Arab ,
apc_Arab , ars_Arab , ary_Arab, arz_Arab , ast_Latn , awa_Deva , ayr_Latn ,
azb_Arab , azj_Latn, ban_Latn , bem_Latn , bjn_Arab , bjn_Latn , bos_Latn ,
bug_Latn, ceb_Latn, ces_Latn, cjk_Latn, ckb_Arab, crh_Latn , cym_Latn ,
dan_Latn , deu_Latn , dik_Latn , dyu_Latn , epo_Latn , est_Latn , ewe_Latn ,
fao_Latn , fij_Latn , fin_Latn , fur_Latn , fuv_Latn , gla_Latn , gle_Latn ,
glg_Latn, grn_Latn , hat_Latn , hau_Latn , hne_Deva , hrv_Latn , hun_Latn ,
ilo_Latn , isl_Latn , ita_Latn , jav_Latn , kab_Latn , kac_Latn , kam_Latn ,
kas_Arab , kas_Deva , knc_Arab , knc_Latn , kbp_Latn , kea_Latn , kmb_Latn ,
kmr_Latn , kon_Latn , lij_Latn, lim_Latn , lit_Latn , Imo_Latn , Itg_Latn ,
Itz_Latn , lua_Latn, lug_Latn , luo_Latn , lus_Latn , lvs_Latn , mag_Deva ,
mai_Deva , min_Latn , plt_Latn , mlt_Latn , mni_Beng , mos_Latn , mri_Latn ,
nld_Latn , nno_Latn , nob_Latn , nus_Latn , nya_Latn , oci_Latn , gaz_Latn ,
pag_Latn , pap_Latn , pes_Arab , pol_Latn , prs_Arab , pbt_Arab, quy_Latn,
ron_Latn , run_Latn , sag_Latn , san_Deva , scn_Latn , slk_Latn , slv_Latn,
smo_Latn , sna_Latn , snd_Arab , som_Latn , als_Latn , srd_Latn , ssw_Latn ,
sun_Latn , swe_Latn , szl_Latn , tgl_Latn , taq_Latn , tpi_Latn , tsn_Latn ,
tso_Latn , tuk_Latn , tum_Latn , tur_Latn , twi_Latn , uig_Arab , umb_Latn ,
uzn_Latn , vec_Latn , war_Latn , yue_Hant , zsm_Latn

BLOOMz

Table 13: The languages covered during pretraining of each of the MLMs categorized by the amount of data that
was seen for them during pretraining.
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‘ ‘ Category Languages

High hye_Armn , kan_Knda , tur_Latn , ita_Latn , nld_Latn , pol_Latn , por_Latn ,
isl_Latn , fra_Latn , deu_Latn , spa_Latn , rus_Cyrl , eng_Latn
Mid est_Latn , ben_Beng , mar_Deva, slv_Latn, lit_Latn , heb_Hebr , zsm_Latn ,
cat_Latn , tha_Thai , kor_Hang , slk_Latn , hin_Deva , bul_Cyrl, nob_Latn ,
fin_Latn , dan_Latn , hun_Latn , ukr_Cyrl, ell_Grek , ron_Latn , swe_Latn ,
arb_Arab , pes_Arab , zho_Hans , ces_Latn
Low hat_Latn , kor_Hang , xho_Latn , ibo_Latn , lao_Laoo , mri_Latn , smo_Latn ,
ckb_Arab , amh_Ethi, nya_Latn, hau_Latn, plt_Latn, pbt_Arab, gla_Latn,
sun_Latn , jpn_Jpan , sot_Latn , ceb_Latn , pan_Guru , gle_Latn , kir_Cyrl,
epo_Latn , sin_Sinh, guj_Gujr, yor_Latn , tgk_Cyrl, snd_Arab , mya_Mymr ,
kaz_Cyrl , khm_Khmr , som_Latn , swh_Latn , ydd_Hebr, uzn_Latn , hun_Latn ,
mlt_Latn , eus_Latn , bel_Cyrl, kat_Geor , mkd_Cyrl , mal_Mlym , khk_Cyrl,
tha_Thai , afr_Latn , ukr_Cyrl, Itz_Latn , tel_Telu , urd_Arab , lit_Latn,
npi_Deva , srp_Cyrl, tam_Taml , cym_Latn , als_Latn , glg_Latn, azj_Latn,
lvs_Latn
Unseen ace_Arab , ace_Latn , acm_Arab , acq_Arab, aeb_Arab , ajp_Arab , aka_Latn,
apc_Arab , ars_Arab , ary_Arab , arz_Arab , asm_Beng , ast_Latn , awa_Deva,
ayr_Latn, azb_Arab , bak_Cyrl , bam_Latn , ban_Latn , bem_Latn , bho_Deva ,
bjn_Arab , bjn_Latn , bos_Latn , bug_Latn , cjk_Latn , crh_Latn , dik_Latn ,
dyu_Latn , ewe_Latn, fao_Latn, fij_Latn, fon_Latn, fur_Latn, fuv_Latn,
grn_Latn , hne_Deva , hrv_Latn , ilo_Latn , kab_Latn , kac_Latn , kam_Latn ,
kas_Arab , kas_Deva , knc_Arab , knc_Latn , kbp_Latn , kea_Latn , kik_Latn ,
kin_Latn , kmb_Latn , kmr_Latn , kon_Latn , lij_Latn , lim_Latn , lin_Latn ,
Imo_Latn, Itg_Latn , lua_Latn , lug_Latn , luo_Latn , lus_Latn , mag_Deva ,
mai_Deva , min_Latn , mni_Beng , mos_Latn , nno_Latn , nso_Latn , nus_Latn ,
oci_Latn, gaz_Latn, pag_Latn, pap_Latn , prs_Arab, quy_Latn , run_Latn ,
sag_Latn , san_Deva, scn_Latn , shn_Mymr , srd_Latn , ssw_Latn , szI_Latn,
tat_Cyrl , tgl_Latn , tir_Ethi, taq_Latn , tpi_Latn , tsn_Latn , tso_Latn ,
tuk_Latn , tum_Latn , twi_Latn , tzm_Tfng , uig_Arab , umb_Latn , vec_Latn ,
war_Latn , wol_Latn , yue_Hant , zho_Hant , dzo_Tibt

AYA

Table 14: The languages covered during AYA’s pretraining categorized by the amount of data that was seen during
pretraining.
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