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Abstract

We present the results of the first edition of the
Model Compression shared task, organized as
part of the 10th Conference on Machine Trans-
lation (WMT25). The task challenged partic-
ipants to compress Large Language Models
(LLMs) toward enabling practical deployment
in resource-constrained scenarios, while mini-
mizing loss in translation performance. In this
edition, participants could choose to compete
in either a constrained track, which required
compressing a specific model (Aya Expanse
8B) evaluated on a limited set of language
pairs (Czech→German, Japanese→Chinese,
and English→Arabic), or an unconstrained
track, which placed no restrictions on the model
and allowed submissions for any of the 15 lan-
guage directions covered by the General MT
task. We received 12 submissions from 3 teams,
all in the constrained track. They proposed dif-
ferent compression solutions and covered var-
ious language combinations. Evaluation was
conducted separately for each language, mea-
suring translation quality using COMET and
MetricX, model size, and inference speed on
an Nvidia A100 GPU.

1 Introduction

Large Language Models (LLMs) have demon-
strated exceptional performance across a wide
range of tasks. However, efforts to enhance their
capabilities, by expanding language coverage, inte-
grating multimodal data, and improving task gen-
eralization, have led to a dramatic increase in both
model size and computational demands (Zhu et al.,
2024). This rapid growth poses significant chal-
lenges for real-world deployment, particularly in
resource-constrained environments such as mobile
devices, embedded systems, and edge computing
platforms, where low-latency, on-device processing
is often required. Compressing foundation models
is therefore more than a technical pursuit: it is a
strategic priority with implications for global ac-

cessibility1 and the sustainability of computational
and environmental costs. Striking the right balance
between performance, compactness, and efficiency
is thus essential to make LLMs truly ubiquitous
and beneficial for everyone, regardless of location
or access to high-end infrastructure.

It is with this long-term goal in mind that, follow-
ing the analogous task for speech translation in the
IWSLT 2025 campaign (Abdulmumin et al., 2025),
the new Model Compression shared task was in-
troduced at WMT 2025.2 This initiative follows
three editions of the shared task at the Workshop on
Machine Translation and Generation (Birch et al.,
2018; Hayashi et al., 2019; Heafield et al., 2020)
and two editions of the shared task on Efficient
Translation (Heafield et al., 2021, 2022). It revives
earlier focus on the efficiency of machine trans-
lation, while updating it to reflect the current AI
landscape with the rise of general-purpose LLMs.

In this context, our aim is to provide a timely
evaluation of compression techniques for general-
purpose LLMs within the specific task of machine
translation. This setting offers a valuable opportu-
nity to explore key research questions, such as:

• To what extent can the over-parameterization
of LLMs—originally pursued to enable gen-
eralization, robustness, task flexibility, and
broad language coverage—be reduced in fa-
vor of compactness and efficiency, while pre-
serving MT quality?

• How do different compression techniques,
with varying degrees of aggressiveness, im-
pact translation quality in such settings?

1In the U.S. around 15% of adults rely exclu-
sively on mobile devices to access the internet
(https://www.pewresearch.org/internet/fact-sheet/
mobile/), and it is even more pronounced in devel-
oping regions (https://www.eib.org/en/essays/
african-digital-infrastructure).

2https://www2.statmt.org/wmt25/

https://www.pewresearch.org/internet/fact-sheet/mobile/
https://www.pewresearch.org/internet/fact-sheet/mobile/
https://www.eib.org/en/essays/african-digital-infrastructure
https://www.eib.org/en/essays/african-digital-infrastructure
https://www2.statmt.org/wmt25/
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2 Task Description

The goal of the Model Compression task is to re-
duce the size of a general-purpose LLM while pre-
serving a strong balance between compactness and
MT performance. This section provides a brief
overview of how the first round of the task was
structured, focusing on the proposed tracks, data
conditions, and evaluation methodology.

2.1 Tracks

Participants could choose between two tracks: con-
strained and unconstrained.

The constrained track was designed to ensure a
level playing field by establishing uniform condi-
tions across all participants, allowing for directly
comparable results. It focused on the compression
of a specific model in a fixed language setting. The
model selected for this purpose was Aya Expanse
8B,3 chosen for its permissive license (CC-BY-NC
4.0) and its favorable trade-off between the size (8
billion parameters; approximately 16 GB in FP16
precision) and performance.

In the constrained settings, we mea-
sured performance across three language
pairs: Czech→German, Japanese→Chinese,
English→Arabic. These pairs were selected to
provide a sufficiently diverse coverage of language
families and scripts. Submissions were allowed for
any of these directions. Any model compression
technique e.g., pruning (Frankle and Carbin,
2019; Frankle et al., 2020), quantization (Devlin,
2017), or distillation (Kim and Rush, 2016), was
permitted, provided that the final compressed
model remained closely derived from Aya Expanse
8B. For instance, in the case of distillation, student
models had to be obtained through compression of
Aya Expanse 8B (e.g., by pruning or quantizing it)
to qualify for the constrained track. Otherwise, we
would consider such systems as unconstrained.

The unconstrained track provided participants
with complete freedom to compress any model of
their choice and apply it to any of the 15 language
directions covered by the WMT25 General MT
task (GenMT) (Kocmi et al., 2025). As in the con-
strained track, separate rankings were planned for
each language direction.

3https://huggingface.co/CohereLabs/
aya-expanse-8b

2.2 Data

Data usage policies were aligned with those of the
GenMT task. Participants were therefore allowed
to calibrate and fine-tune their compressed models
using the publicly available datasets released for
this year’s round,4 as well as test sets from previous
WMT editions.

2.3 Evaluation

Submissions were evaluated5 along three key di-
mensions:

• Translation quality measured using the same
automatic metrics employed in the GenMT
task;

• Model size as disk space footprint;
• Inference speed as the average number of

output tokens produced per second when pro-
cessing the test set.

All three were considered both independently
and jointly. We report Pareto frontier rank-
ings to visualize system differences through
quality–size, quality–speed and size–speed plots.
Since we received multiple submissions only for
Czech→German, this type of visualization was only
feasible for that language direction.

To ensure a fair and informative evaluation, we
create a homogeneous hardware environment for
running the submitted systems. We used machines
with a single Nvidia A100 GPU having 80GB of
VRAM, AMD EPYC CPU with 96 cores, and
866GB RAM.

2.4 Submission

Participating teams were asked to provide a link to
a Docker image containing all necessary software
and model files for translation, along with basic in-
formation about the maximum batch size supported
by their model(s) under the specified hardware con-
figuration. Upon request, we also offered storage
space to teams who needed it or preferred to up-
load their models externally to their institutional
infrastructure.

3 Participants

Three teams submitted systems to the task, as
summarized in Table 1. The organizers also in-
cluded baseline systems. Below, we provide a brief

4https://www2.statmt.org/wmt25/mtdata/
5Scripts used for evaluation are available at: https://

github.com/thammegowda/wmt25-model-compression

https://huggingface.co/CohereLabs/aya-expanse-8b
https://huggingface.co/CohereLabs/aya-expanse-8b
https://www2.statmt.org/wmt25/mtdata/
https://github.com/thammegowda/wmt25-model-compression
https://github.com/thammegowda/wmt25-model-compression
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Institution Submission Track No. Sub. Languages

Stevens Institute of Technology, Rice University, Lambda Inc. AyaQ Constr. 1 cs-de
Stevens Institute of Technology, Rice University, Lambda Inc. LeanAya Constr. 1 cs-de
Trinity College Dublin (Ponce et al., 2025b) TCD-Kreasof Constr. 3 cs-de
Vicomtech (Ponce et al., 2025b) Vicomtech Constr. 7 cs-de, jp-zh, en-ar

Organizers (compressed baseline model) BitsAndBytes Constr. 4 as baseline

Table 1: Participants in the WMT 2025 Model Compression shared task with the number of submitted system
variants and declared language support.

Submission Description

base Base Aya Expanse 8B in 16bit

bnb-8bit 8bit integer
bnb-4bit-fp4 4bit FP4
bnb-4bit-nf4 4bit NF4
bnb-4bit-nf4-2q 4bit NF4, double-quantization

Table 2: Baseline and BitsAndBytes (Dettmers et al.,
2022, 2023) systems submitted by the organizers.

overview of the proposed approaches, all developed
within the constrained track.

AyaQ6 This participation employs GPTQ 4-bit
quantization (Frantar et al., 2023) with a group
size of 32 to enable efficient and scalable LLM
inference. The WMT dataset is used as calibration
data to guide the quantization process, ensuring
the compressed model retains high accuracy on
language understanding and generation tasks. The
quantized models are integrated through the LLM
Compressor framework (AI and vLLM Project,
2024), which streamlines conversion and metadata
management. The setup is fully compatible with
vLLM (Kwon et al., 2023), a high-throughput in-
ference engine optimized for GPU deployment, en-
abling fast and memory-efficient execution with
minimal performance loss. This approach demon-
strates how structured quantization, targeted cal-
ibration, and system-level integration can enable
practical, production-ready LLM deployment.

LeanAya This participation is based on Lean-
Quant (Loss-Error-Aware Network Quantization,
(Zhang and Shrivastava, 2025)), an accurate, ver-
satile, and scalable quantization method. Existing
iterative loss-error-based quantization techniques
typically rely on min-max affine grids, which of-
ten degrade model quality due to outliers in the
inverse Hessian diagonals. LeanQuant overcomes
this limitation by learning loss-error-aware quan-

6We did not receive system description papers for AyaQ
and LeanAya submissions.

tization grids instead of using fixed, non-adaptive
ones. This approach not only improves accuracy
but also supports a wider range of quantization
schemes, including both affine and non-uniform,
enhancing compatibility across diverse deployment
frameworks.

TCD-Kreasof (Moslem et al., 2025) This par-
ticipation employs iterative layer pruning to incre-
mentally identify and remove layers that contribute
least to translation quality, one at a time. Layer
importance is assessed by measuring translation
performance with each layer individually removed.
After pruning the least critical layer, the evalua-
tion is repeated on the remaining ones until the tar-
get pruning level is reached. The resulting pruned
model was then fine-tuned on 100k sentences from
the News Commentary dataset. This process pro-
duced three submissions: the primary one is a 24-
layer model with 6.28B parameters, while the two
contrastive submissions are 20-layer and 16-layer
models, with 5.41B and 4.54B parameters, respec-
tively.

Vicomtech (Ponce et al., 2025b) This participa-
tion employs GeLaCo (Ponce et al., 2025a), an evo-
lutionary approach to LLM compression based on
layer merging operations. Models are compressed
at three ratios (0.25, 0.50, and 0.75), representing
the proportion of original layers collapsed through
differential weight merging. To recover perfor-
mance after compression, over 3 million translation
instructions (1 million per language) from a subset
of WMT25 translation data are used. For the 0.25
and 0.50 compression levels, models are fine-tuned
on this data, while the 0.75 model is trained using
General Knowledge Distillation (GKD (Tan et al.,
2023)). Additionally, post-training quantization
is applied using the bitsandbytes library7 to fur-
ther reduce model size to 8-bit and 4-bit precision.
The primary submission (gelaco-0.75_gkd_q4)

7https://github.com/bitsandbytes-foundation/
bitsandbytes

https://github.com/bitsandbytes-foundation/bitsandbytes
https://github.com/bitsandbytes-foundation/bitsandbytes
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English→Arabic Japanese→Chinese Czech→German
Submission System COMET↑ MetricX↓ COMET↑ MetricX↓ COMET↑ MetricX↓ #Halluc.

Baseline base 25.4 8.20 44.5 6.44 55.3 5.08 83
BitsAndBytes bnb-8bit 25.2 8.33 44.4 6.49 55.6 5.08 86

bnb-4bit-fp4 24.4 8.26 43.6 6.54 54.5 5.24 153
bnb-4bit-nf4 25.4 8.25 44.6 6.43 55.7 5.15 103
bnb-4bit-nf4-2q 25.4 8.25 44.6 6.41 55.5 5.15 106

AyaQ mcptqsr – – – – 40.3 8.70 200
LeanAya mcsr – – – – 53.2 5.36 66
TCD-Kreasof primary – – – – 39.9 7.93 78

contrastive1 – – – – 32.4 9.49 102
contrastive2 – – – – 21.4 14.53 335

Vicomtech gelaco-0.25_ft_q4 20.9 9.80 38.7 8.55 41.2 7.52 37
gelaco-0.25_ft_q8 22.0 9.27 39.0 8.42 44.4 6.75 42
gelaco-0.50_ft_q4 18.0 12.10 31.4 10.12 31.0 9.82 94
gelaco-0.50_ft_q8 17.9 11.57 32.2 10.15 33.7 9.24 52
gelaco-0.75_gkd 16.1 13.90 31.8 9.93 30.6 11.03 198
gelaco-0.75_gkd_q4 16.7 13.98 32.2 9.86 31.1 11.04 187
gelaco-0.75_gkd_q8 15.7 13.57 31.5 9.87 31.1 10.82 197

Table 3: Translation quality metric scores on the official WMT25 GenMT test sets. XCOMET-XL and MetricX-24-
Hybrid-XL scores. AyaQ and LeanAya declared support only for Czech→German. TCD-Kreasof systems did not
allow to generate outputs for other languages.
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(b) Output rates excluding warmup times.

Figure 1: Inference speed as tokens/s when translating the entire Czech→GermanWMT25 test set. Mean and
standard deviation across 3 runs, reported for various batch sizes. Primary submissions only for readability.

combines evolutionary layer collapse, knowledge
distillation, and quantization to achieve substan-
tial size reduction while maintaining reasonable
translation performance.

Baselines As a reference system (see Table 2),
we included the unmodified Aya Expanse 8B model
(FP16, 16.1GB) (Dang et al., 2024) and a family
of runtime–quantized variants created using the
Hugging Face integration of the bitsandbytes li-
brary (Dettmers et al., 2022, 2023), without the
use of vLLM. The baselines were not fine-tuned
or adapted on the task data; their purpose was to
anchor the quality–size–speed trade-offs for sub-
mitted systems. Quantized versions include 8-bit
and 4-bit modes, with two 4-bit quantization data

types: NF4 (normal floating point) and FP4.
The organizers’ baselines illustrate the perfor-

mance one can obtain from (i) the full reference
model, and (ii) straightforward, widely available
post-training quantization strategies, against which
more sophisticated compression pipelines can be
directly compared in terms of translation quality,
memory footprint, and decoding speed.

4 Results

We evaluate systems’ performance on the official
WMT25 GenMT test sets, which comprise between
332 and 456 paragraphs for each of the three con-
sidered language pairs. Because we received sub-
missions to the constrained track only and most
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Figure 2: Comparison of translation quality, model size
and inference speed for batch size 16. The staircase
shows the Pareto frontline.

submissions focused on Czech→German, we pri-
marily report results for this language pair unless
mentioned otherwise.

We noticed that most of the systems may suffer
from hallucinated content, which affects both trans-
lation quality and decoding speed, and complicates
system comparisons. To minimize the impact of
hallucinations, we segment the original paragraph-
level test data at newline characters and remove

empty lines. For Czech-German, this results in a
test set with 2,868 segments.

To further investigate the potential impact of hal-
lucinations, we also evaluate on a subset of the
test set that only includes 1,928 segments where
none of the systems exhibits hallucinations under
any batch setting. This subset makes it possible
to assess system performance in terms of infer-
ence speed more accurately, by excluding the dis-
tortions that hallucinations would introduce into
cross-system comparisons. For brevity, analysis
on the hallucination-free test data is presented in
Appendix A.

Below, we briefly discuss the results in terms of
quality, model size and speed. The detailed results
across more benchmark settings are provided in
Appendix B.

4.1 Translation Quality

Following the reference-based automatic eval-
uation settings proposed by the GenMT task,
translation quality is automatically evaluated us-
ing XCOMET-XL8 (Guerreiro et al., 2024) and
MetricX-24-Hybrid-XL9 (Juraska et al., 2024). Re-
sults are shown in Table 3, in which we also report
the number of potentially hallucinated lines for
each system, providing insight into system robust-
ness across evaluation conditions. An output line
was considered hallucinated if its output length
(measured as number of characters) was at least
twice the length of the source. Since we did not
observe significant score differences across decod-
ing with various batch sizes, we only report metric
scores computed from outputs generated with batch
size 1. However, we did observe minor differences
in the outputs at different batch sizes, which indi-
cates that the submitted implementations do not
account for padding handling e.g., for relative posi-
tions (Papi et al., 2024).

The main observation is that BitsAndBytes and
LeanAya achieve compression with minimal qual-
ity loss, nearly matching the baseline with ≈55
COMET scores. Other compression methods can
decrease quality significantly, in particular for
Czech→German, with ≈31–44 COMET scores.

4.2 Model Size

For each system variant, we record model size as
the on-disk footprint of the submitted model direc-

8Unbabel/XCOMET-XL
9google/metricx-24-hybrid-xl-v2p6
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Quality Size↓ Speed↑ (tok/s)
Submission System COMET↑ MetricX↓ (GB) b=1 b=16 b=64

Baseline base 55.3 5.08 15.0 33.3 153.6 170.2
BitsAndBytes bnb-8bit 55.6 5.08 8.5 12.3 97.3 196.4

bnb-4bit-fp4 54.5 5.24 5.6 23.2 63.2 93.2
bnb-4bit-nf4 55.7 5.15 5.6 23.4 78.4 134.3
bnb-4bit-nf4-2q 55.5 5.15 5.3 19.8 76.8 131.6

AyaQ mcptqsr 40.3 8.70 7.6 48.5 165.5 264.1
LeanAya mcsr 53.2 5.36 7.2 2.9 21.3 27.9
TCD-Kreasof primary 39.9 7.93 12.0 42.7 19.3 –

contrastive1 32.4 9.49 11.0 50.8 22.9 –
contrastive2 21.4 14.53 8.5 59.8 30.1 11.8

Vicomtech gelaco-0.25_ft_q4 41.2 7.52 4.5 28.6 111.4 229.1
gelaco-0.25_ft_q8 44.4 6.75 6.9 14.5 77.5 171.7
gelaco-0.50_ft_q4 31.0 9.82 3.7 40.9 125.5 271.5
gelaco-0.50_ft_q8 33.7 9.24 5.3 21.8 81.1 180.2
gelaco-0.75_gkd 30.6 11.03 7.2 129.0 366.5 636.8
gelaco-0.75_gkd_q4 31.1 11.04 2.9 68.3 181.9 366.5
gelaco-0.75_gkd_q8 31.1 10.82 3.6 39.0 102.5 204.3

Table 4: Final results of the WMT25 Model Compression shared task. Primary submission names are bolded.

tory. The size is the sum of parameter shard files,
tokenizer, and minimal wrapper scripts, which di-
rectly reflects the storage and transfer cost of de-
ploying the model in gigabytes (GB).

We do not measure peak CPU memory usage or
GPU VRAM footprint.

The model sizes are reported in Table 4. Orga-
nizer’s submission BitsAndBytes (4-bit and 8-bit),
while maintaining the translation quality, reduces
the model size by up to 65%. On the other hand, Vi-
comtech’s systems achieve best compression (81%,
down to 2.9 GB from 15.0 GB) but suffer signifi-
cant quality degradation.

4.3 Inference Speed

Each model was run three times per batch size,
and wall-clock time was recorded for each run.
Our primary metric, output rate, is defined as the
number of output tokens divided by adjusted wall
time (tokens/s). Output tokens were counted by re-
tokenizing the generated hypotheses using the Aya
Expanse 8B tokenizer. To isolate model initializa-
tion overhead, we performed a separate “warmup”
run per model, decoding a single short sentence
with batch size 1. The average wall time of warmup
runs was subtracted from the total wall time to
compute an adjusted speed metric. We also tested
multiple batch sizes to analyze throughput scaling.
The results for primary systems are presented on
Figure 1.

As expected, inference speed scales with batch
size, but not uniformly. Vicomtech’s systems
scaled most efficiently from 70 tokens/s at batch

size 1 to nearly 1000 tokens/s at 512. Some mod-
els saturated early, showing minimal speedup with
larger batch sizes or even failing to produce out-
puts.

5 Conclusion and Future Directions

The final results of the WMT25 shared task on
model compression are summarized in Table 4.
Figure 2 shows Pareto front comparisons across
evaluation criteria.

The key findings can be summarized as follows:

• BitsAndBytes baselines and LeanAya main-
tained translation quality with moderate speed
and model size reduction;

• Vicomtech’s systems achieved best compres-
sion rates, latency and throughput thanks to
efficient batch scaling, but at the cost of trans-
lation quality;

• Quantization has emerged as the most popular
approach for its simplicity and effectiveness;

• Hallucinations in compressed outputs reveal
the fragility of the current approaches and
the need for more robust evaluation and
compression-aware training techniques.

Overall, despite the moderate participation in
this shared task limited the breadth of exploration,
several submissions showed promising results. The
results of this evaluation campaign highlight that
task-specific compression of LLMs still warrants
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more research efforts, especially at high compres-
sion rates required for running systems on edge
devices. The smallest model still requires almost
3GB of disk space, which is incompatible with
many edge devices that are equipped with a few
hundred MB of memory (Cai et al., 2022). Addi-
tionally, high compression rates result in a signifi-
cant performance drop. We believe that pushing the
boundaries of compression rates and reducing the
quality degradation in such settings represent the
most interesting challenges for future research on
the topic and for participants of the future editions
of the task.

Looking ahead, future iterations of this task
could benefit from expanding the evaluation to
more language pairs, aligning more tightly with
the evaluation benchmark at the GenMT task, and
including human assessments of the outputs.

6 Limitations

This study offers an early glimpse into the land-
scape of model compression for machine transla-
tion, but several limitations constrain the gener-
ality of its findings. First, the participation was
only modest, all systems compressed the same base
model (Aya Expanse 8B) and primarily focused on
one language pair (Czech→German). Second, the
submissions relied mainly on quantization, with
limited exploration of other well-established com-
pression techniques such as parameter pruning or
knowledge distillation. Third, only one system
used vLLM infrastructure, limiting comparability.

Lastly, quality assessment depended solely on
automatic metrics (COMET and MetricX). We did
not conduct human evaluation or cross-language
validation. We also did not present some important
deployment metrics (e.g., memory usage, latency,
energy consumption), which narrows the conclu-
sions.
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ley, Mariya Shmatova, Steinþór Steingrímsson, Lisa
Yankovskaya, and Vilém Zouhar. 2025. Preliminary
ranking of wmt25 general machine translation sys-
tems.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Ef-
ficient Memory Management for Large Language
Model Serving with PagedAttention. In Proceedings
of the ACM SIGOPS 29th Symposium on Operating
Systems Principles.

Yasmin Moslem, Muhammad Hazim Al Farouq, and
D. John Kelleher. 2025. Iterative Layer Pruning for
Efficient Translation Inference. In Proceedings of the
Tenth Conference on Machine Translation, Suzhou,
China.

Sara Papi, Marco Gaido, Andrea Pilzer, and Matteo Ne-
gri. 2024. When good and reproducible results are a
giant with feet of clay: The importance of software
quality in NLP. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 3657–3672,
Bangkok, Thailand. Association for Computational
Linguistics.

David Ponce, Thierry Etchegoyhen, and Javier Del Ser.
2025a. Gelaco: An evolutionary approach to layer
compression. arXiv preprint arXiv:2507.10059.

David Ponce, Harritxu Gete, and Thierry Etchegoy-
hen. 2025b. Vicomtech@WMT 2025: Evolution-
ary Model Compression for Machine Translation. In
Proceedings of the Tenth Conference on Machine
Translation, Suzhou, China.

https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf
https://doi.org/10.18653/v1/D17-1300
https://doi.org/10.18653/v1/D17-1300
https://doi.org/10.18653/v1/D17-1300
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1903.01611
http://arxiv.org/abs/1903.01611
https://arxiv.org/pdf/2210.17323
https://arxiv.org/pdf/2210.17323
https://doi.org/10.18653/v1/2024.emnlp-demo.34
https://doi.org/10.18653/v1/2024.emnlp-demo.34
https://doi.org/10.18653/v1/2024.emnlp-demo.34
https://doi.org/10.1162/tacl_a_00683
https://doi.org/10.1162/tacl_a_00683
https://doi.org/10.18653/v1/D19-5601
https://doi.org/10.18653/v1/D19-5601
https://doi.org/10.18653/v1/D19-5601
https://doi.org/10.18653/v1/2020.ngt-1.1
https://doi.org/10.18653/v1/2020.ngt-1.1
https://aclanthology.org/2022.wmt-1.4/
https://aclanthology.org/2022.wmt-1.4/
https://aclanthology.org/2022.wmt-1.4/
https://aclanthology.org/2021.wmt-1.68/
https://aclanthology.org/2021.wmt-1.68/
https://doi.org/10.18653/v1/2024.wmt-1.35
https://doi.org/10.18653/v1/2024.wmt-1.35
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
http://arxiv.org/abs/2508.14909
http://arxiv.org/abs/2508.14909
http://arxiv.org/abs/2508.14909
https://dl.acm.org/doi/pdf/10.1145/3600006.3613165
https://dl.acm.org/doi/pdf/10.1145/3600006.3613165
https://dl.acm.org/doi/pdf/10.1145/3600006.3613165
https://doi.org/10.18653/v1/2024.acl-long.200
https://doi.org/10.18653/v1/2024.acl-long.200
https://doi.org/10.18653/v1/2024.acl-long.200
https://arxiv.org/abs/2507.10059
https://arxiv.org/abs/2507.10059


684

Ricardo Rei, Nuno M. Guerreiro, JosÃ© Pombal, Daan
van Stigt, Marcos Treviso, Luisa Coheur, José G.
C. de Souza, and André Martins. 2023. Scaling up
CometKiwi: Unbabel-IST 2023 submission for the
quality estimation shared task. In Proceedings of the
Eighth Conference on Machine Translation, pages
841–848, Singapore. Association for Computational
Linguistics.

Shicheng Tan, Weng Lam Tam, Yuanchun Wang, Wen-
wen Gong, Shu Zhao, Peng Zhang, and Jie Tang.
2023. GKD: A general knowledge distillation frame-
work for large-scale pre-trained language model. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 5:
Industry Track), pages 134–148, Toronto, Canada.
Association for Computational Linguistics.

Tianyi Zhang and Anshumali Shrivastava. 2025. Lean-
Quant: Accurate and Scalable Large Language
Model Quantization with Loss-error-aware Grid. In
International Conference on Representation Learn-
ing, volume 2025, pages 35521–35544.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping
Wang. 2024. A survey on model compression for
large language models. Transactions of the Associa-
tion for Computational Linguistics, 12:1556–1577.

A Hallucinations

To understand if the potential hallucinations im-
pacted the results, we benchmarked the participat-
ing systems on a subset of the Czech→German
WMT25 test set. This subset includes only seg-
ments where none of the systems exhibits hallu-
cinations under any batch setting. An output line
was considered hallucinated if its tokenized out-
put length was at least twice the length of the tok-
enized source. This version of the Czech-German
test set reduces the number of input segments from
2,686 to 1,928 segments. Table 5 illustrates quality
comparisons across systems for both versions of
the test set using a reference-less metric, WMT23-
CometKiwi-XL (Rei et al., 2023), computed using
Pymarian (Gowda et al., 2024). Inference speed
metrics across different settings are presented in
Figures 3 and 4.

full subset
Submission System CKiwi↑ CKiwi↑ #Halluc.

Baseline base 66.9 71.1 83
BitsAndBytes bnb-8bit 66.8 — 86

bnb-4bit-fp4 66.5 70.8 153
bnb-4bit-nf4 66.6 70.7 103
bnb-4bit-nf4-2q 66.7 70.8 106

AyaQ mcptqsr 58.9 64.9 200
LeanAya mcsr 66.3 70.9 66
TCD-Kreasof primary 59.7 64.4 78

contrastive1 55.0 58.8 102
contrastive2 39.3 42.9 335

Vicomtech gelaco-0.25_ft_q4 60.5 64.1 37
gelaco-0.25_ft_q8 61.8 65.4 42
gelaco-0.50_ft_q4 53.3 56.7 94
gelaco-0.50_ft_q8 55.9 59.3 52
gelaco-0.75_gkd 54.8 59.3 198
gelaco-0.75_gkd_q4 54.5 59.9 187
gelaco-0.75_gkd_q8 55.2 60.6 197

Table 5: COMET-Kiwi-XL scores for the original
Czech→German WMT25 test set and the filtered ver-
sion without lines exhibiting potential hallucinations.

B Detailed results

Figure 5 presents extended evaluation of the aver-
age output token rates across multiple batch sizes
for all submissions, including contrastive submis-
sions.

Table 6 provides details about warmup times and
total decoding times for two batch size settings for
each system.

https://doi.org/10.18653/v1/2023.wmt-1.73
https://doi.org/10.18653/v1/2023.wmt-1.73
https://doi.org/10.18653/v1/2023.wmt-1.73
https://doi.org/10.18653/v1/2023.acl-industry.15
https://doi.org/10.18653/v1/2023.acl-industry.15
https://proceedings.iclr.cc/paper_files/paper/2025/file/57ccc284de6f060c8dcde8f9352f70a5-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2025/file/57ccc284de6f060c8dcde8f9352f70a5-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2025/file/57ccc284de6f060c8dcde8f9352f70a5-Paper-Conference.pdf
https://doi.org/10.1162/tacl_a_00704
https://doi.org/10.1162/tacl_a_00704


685

1 2 4 8 16 32 64 128 256 512 1024
Batch size

0

200

400

600

800

1000

1200

1400
Ou

tp
ut

 ra
te

 (t
ok

en
s/

s)
Aya8B:base
AyaQ:mcptqsr
LeanAya:mcsr
TCD-Kreasof:primary
Vicomtech:gelaco-0.75_gkd_q4

(a) Total output rates.

1 2 4 8 16 32 64 128 256 512 1024
Batch size

0

1000

2000

3000

4000

5000

6000

Ou
tp

ut
 ra

te
 e

xc
l. 

wa
rm

up
 (t

ok
en

s/
s)

(b) Output rates excluding warmup times.

Figure 3: Inference speed as tokens/s when translating the subset of the Czech→German WMT25 test set not
causing hallucinations. Mean and standard deviation across 3 runs, reported for various batch sizes. Primary
submissions only.
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(a) Total output rates.
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(b) Output rates excluding warmup times.

Figure 4: Inference speed as tokens/s when translating the subset of the Czech→German WMT25 test set not
causing hallucinations. Mean and standard deviation across 3 runs, reported for various batch sizes. Primary and
contrastive submissions.
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(b) Output rates excluding warmup times.

Figure 5: Inference speed as tokens/s when translating the entire Czech→German WMT25 test set. Mean and
standard deviation across 3 runs, reported for various batch sizes. Primary and contrastive submissions.
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Time Speed↑ (tok/s) Time Speed↑ (tok/s)
Warmup (sec.) total excl.w. (sec.) total excl.w.

Submission System (sec.) Batch size 1 Batch size 16

Baseline base 22.5 2,659.3 33.3 33.6 576.6 153.6 159.9
BitsAndBytes bnb-8bit 19.7 7,231.4 12.3 12.3 923.2 97.3 99.4

bnb-4bit-fp4 7.6 4,065.9 23.2 23.2 1,492.0 63.2 63.5
bnb-4bit-nf4 7.4 3,762.6 23.4 23.5 1,123.1 78.4 78.9
bnb-4bit-nf4-2q 7.8 4,461.4 19.8 19.8 1,148.7 76.8 77.3

AyaQ mcptqsr 62.5 1,111.5 48.5 51.4 325.9 165.5 204.8
LeanAya mcsr 25.7 32,198.5 2.9 2.9 4,291.8 21.3 21.4
TCD-Kreasof primary 10.1 4,228.0 42.7 42.8 8,931.0 19.3 19.3

contrastive1 9.2 4,033.2 50.8 50.9 8,970.6 22.9 22.9
contrastive2 8.5 2,994.1 59.8 60.0 5,412.6 30.1 30.2

Vicomtech gelaco-0.25_ft_q4 25.6 2,711.9 28.6 28.9 729.6 111.4 115.4
gelaco-0.25_ft_q8 26.4 5,296.0 14.5 14.6 1,015.7 77.5 79.6
gelaco-0.50_ft_q4 25.6 2,683.6 40.9 41.3 833.1 125.5 129.5
gelaco-0.50_ft_q8 25.3 4,083.0 21.8 22.0 1,155.5 81.1 83.0
gelaco-0.75_gkd 26.0 942.1 129.0 132.7 339.2 366.5 396.9
gelaco-0.75_gkd_q4 25.4 1,773.0 68.3 69.3 670.6 181.9 189.1
gelaco-0.75_gkd_q8 26.4 3,201.9 39.0 39.3 1,201.4 102.5 104.8

(a) Speed metrics for batch sizes 1 and 16.

Time Speed↑ (tok/s) Time Speed↑ (tok/s)
Warmup (sec.) total excl.w. (sec.) total excl.w.

Submission System (sec.) Batch size 64 Batch size 256

Baseline base 22.5 520.5 170.2 177.9 – – –
BitsAndBytes bnb-8bit 19.7 456.6 196.4 205.3 419.1 213.0 223.5

bnb-4bit-fp4 7.6 1,011.3 93.2 93.9 1,245.5 75.6 76.1
bnb-4bit-nf4 7.4 655.5 134.3 135.8 825.8 106.6 107.6
bnb-4bit-nf4-2q 7.8 670.3 131.6 133.1 839.5 105.0 106.0

AyaQ mcptqsr 62.5 204.0 264.1 380.8 136.0 395.2 731.0
LeanAya mcsr 25.7 3,293.0 27.9 28.1 – – –
TCD-Kreasof primary 10.1 – – – – – –

contrastive1 9.2 – – – – – –
contrastive2 8.5 12,428.5 11.8 11.8 – – –

Vicomtech gelaco-0.25_ft_q4 25.6 346.0 229.1 247.4 188.6 431.1 500.2
gelaco-0.25_ft_q8 26.4 455.9 171.7 182.2 384.7 211.5 227.1
gelaco-0.50_ft_q4 25.6 403.0 271.5 290.0 188.0 569.0 658.7
gelaco-0.50_ft_q8 25.3 518.0 180.2 189.5 288.5 322.8 354.9
gelaco-0.75_gkd 26.0 193.8 636.8 735.7 95.6 1,242.6 1,707.5
gelaco-0.75_gkd_q4 25.4 327.3 366.5 397.4 168.5 729.3 858.9
gelaco-0.75_gkd_q8 26.4 582.1 204.3 214.0 255.6 477.5 532.6

(b) Speed metrics for batch sizes 64 and 256.

Table 6: Detailed speed metrics including the total translation time of the Czech→German WMT25 test set, the total
token output rate and token output rate excluding warmup. Averages across 3 runs for various batch sizes.


