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Abstract

In this work, we present our submissions to
the unconstrained track of the System subtask
of the WMT 2025 Creole Language Transla-
tion Shared Task. Of the 52 Creole languages
included in the task, we focus on translation
between English and seven Lusophone Cre-
oles. Our approach leverages known strategies
for low-resource machine translation, including
back-translation and distillation of data, fine-
tuning pre-trained multilingual models, and
post-editing with large language models and
lexicons. We also demonstrate that adding high-
quality parallel Portuguese data in training, ini-
tialising Creole embeddings with Portuguese
embedding weights, and strategically merging
best checkpoints of different fine-tuned models
all produce considerable gains in performance
in certain translation directions. Our best mod-
els outperform the baselines on the Task test set
for eight out of fourteen translation directions.
When evaluated on decontaminated test sets,
they surpass the baselines in all directions.

1 Introduction

The introduction of the first Shared Task for Cre-
ole language machine translation (MT) (Robinson
et al., 2025) is emblematic of the increased atten-
tion that Creole languages have received in the field
of Natural Language Processing in recent years,
both as individual languages (Robinson et al., 2022;
Dabre et al., 2014; Lent et al., 2021; Dabre and
Sukhoo, 2022; Rowe et al., 2025) and in multilin-
gual modeling efforts (Robinson et al., 2024; Lent
et al., 2024). Building on the latter, this Shared
Task covers over 50 Creole languages from a range
of geographical and linguistic contexts. Some are
relatively high-resourced; for example, Haitian Cre-
ole and Papiamento are supported in Google Trans-
late and many others are institutionalised as official
or educational languages (Robinson et al., 2024).
Others are extremely low-resource languages or
even critically endangered or extinct.

The Shared Task invites submissions of data and
systems serving MT between any of the Creole lan-
guages and either English or French, with the exist-
ing Kreyol-MT (Robinson et al., 2024) and Creole-
Val (Lent et al., 2024) translation models serving
as baselines. In this submission, we develop sys-
tems to translate between English (eng) and seven
Lusophone1 Creoles: Angolar (aca), Annobonese
(fab), Guinea-Bissau Creole (pov), Kabuverdianu
(kea), Papiamento (pap), Principense (pre) and
Saotomense (cri).” This set includes relatively
high-resource Creoles (like pap and kea) and ex-
tremely low-resource ones (like aoa, fab and pre).

In our submission, we utilise known strategies
for low-resource MT as well as techniques de-
signed to leverage the linguistic relationship be-
tween our seven Creoles of focus and Portuguese
(por). In particular, we contribute the following:

* We collate additional parallel and monolin-
gual data for pap, pov, kea and cri (Sec-
tions 3.1.2 and 3.1.3).

* We augment the training data with high-
quality parallel eng-por data, synthetic par-
allel data created via back-translation, and
distilled data created via forward-translation
(Section 3.2).

* We fine-tune three pretrained multilingual
base models with different combinations of
data and initialisation strategies (Section 4.2).

* We apply model merging to further improve
translation performance (Section 4.3).

* We post-edit system outputs using LLMs and
bilingual lexicons, improving performance for
five translation directions (Section 4.4).

We release our code in our Github repository.’

!Creoles which are related to Portuguese.

2We focus on translation between these seven Creoles and
English due to availability of test data, but future work could
expand to Creole—Portuguese translation.

3https ://github.com/JacquelineRowe/EdinHelsOW
_CreolesMT. Due to the copyright terms of most of our data
sources, we do not publicly share our dataset. It is available
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2 Related Work

Robinson et al. (2024) release four versions of
Kreyol-MT (KMT), a translation model which sup-
ports all seven of our Creole languages of focus.
The four versions are created by training on both
public and private datasets, and training both from-
scratch and fine-tuning an existing model. For fine-
tuning, they use many-to-many (m2m) mBART-
50 (Tang et al., 2021), a multilingual version of
mBART (Liu et al., 2020) fine-tuned for translation
between 50 languages, as the base model. mBART
is a sequence-to-sequence denoising auto-encoder
pre-trained on large-scale monolingual corpora in
many languages using the BART objective (Lewis
et al., 2020). Lent et al. (2024) also fine-tune m2m
mBART-50 on a different set of Creole languages
including pap.

While the models released in Robinson et al.
(2024) and Lent et al. (2024) are the strongest base-
lines for MT for Creoles in general, some of our
seven languages of focus are also included in other
prior work on MT. The No Language Left Behind
(NLLB) translation model excels at translation of
low-resource languages, and supports pap and kea
(as well as three other Creoles not included in our
study) (NLLB Team et al., 2022). The training data
curated as part of the NLLB effort include less than
10 bitexts for each Creole, but 28M monolingual
sentences in pap and 300k in kea. The FLORES-
200 evaluation dataset was also translated into both
Creoles in this context.

Both kea and pap are featured in PanLex,* a
massive, open-access online lexicon covering over
5,000 languages (Kambholz et al., 2014); but only
pap is supported in GATITOS, a smaller, higher-
quality parallel lexicon for low-resource languages
developed by Jones et al. (2023). These lexical
resources have been used to improve low-resource
MT performance for Creoles. Following prior work
using LL.Ms to post-edit machine translation sys-
tem outputs to correct errors (Xu et al., 2024; Chen
et al., 2024; Hus et al., 2025), Nielsen et al. (2025)
showed that including the entire GATITOS lexi-
con in such post-editing prompts can improve ChrF
scores and reduce lexical confusion, including for
pap-eng MT. Similarly, Hus and Anastasopoulos

to academic researchers for non-commercial purposes upon
request; please contact the lead author for license agreement
and access.

At the time we conducted our study, PanLex was not
accessible online and so we did not use this resource for kea
in our work.

(2024) showed improvements of over 15 ChrF++
in eng-kea MT by post-editing using an LLM with
prompts including parallel words and sentences
extracted from the kea PanLex dataset.

The question of how training data from related
languages can improve MT for Creoles remains
open (Lent et al., 2022). Ma et al. (2025) showed
that the speech foundation model Whisper (Rad-
ford et al., 2023) performs surprisingly well on kea-
eng speech translation (despite having not been
trained on kea speech) when the por language code
is used for decoding, which they hypothesise is
due to pronunciation similarities between the two
languages. Conversely, Fekete et al. (2025) demon-
strated that parameter efficient fine-tuning via lan-
guage adapters improves MT for three Creoles (in-
cluding pap) regardless of whether the adapters
were trained on related languages, unrelated lan-
guages, or even random noise, indicating that lan-
guage adapters improve performance due to regu-
larization rather than cross-lingual transfer.

3 Data

In this section, we briefly describe the data pro-
vided by the task organisers and the additional data
we collect and create for model training. Our novel
data sources are documented in full in Table 6 in
Section A.

3.1 Data Collection

3.1.1 Organiser-Provided Data

To train their models, Robinson et al. (2024) gath-
ered data for 43 Creoles from multilingual datasets,
extracting parallel and monolingual texts from web-
sites, Wikipedia collections, educational materi-
als, religious texts and other sources where avail-
able. Some of their data remains private due to
copyright reasons, but their public training and de-
velopment splits (Traingyr and Valgyr) form the
official training data for the Shared Task. Robin-
son et al. (2024) also provide a public test split
(Testgmt), which we do not use as training data.’
For our seven Creoles of focus, the publicly
available resources parallel with eng from Robin-
son et al. (2024) vary in size and domain. The
datasets for pov, pre, aoa, cri and fab have be-
tween 170 and 450 parallel aligned sentences from

SWhile we did not use Testxmr data to train our models, we
did evaluate our models’ performance on this public test split
in order to make modelling decisions, prior to the announce-
ment that the official Shared Task test set would be identical
to Testxmr.
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educational materials, collected from the APiCS
corpus (Michaelis et al., 2013). In contrast, the par-
allel datasets for kea and pap are larger and more
diverse, both drawing data from FLORES-200 dev
and NLLB train (NLLB Team et al., 2022) as well
as APiCS (Michaelis et al., 2013). The public pap
dataset® also includes bitexts from the Online li-
brary of The Church of Jesus Christ of Latter-day
Saints’, LegoMT (Yuan et al., 2023), Tatoeba®, and
Wikipedia, as well as a bilingual lexicon.” Parallel
sentences with languages other than eng are avail-
able for pap and kea, but we include only parallel
data with eng.

3.1.2 Additional Parallel Data

To augment the official task data, we collect ad-
ditional data parallel with eng for pap, pov and
kea.'” As is common with low-resource languages,
much of the publicly-available parallel data sources
we could find for each language are religious in na-
ture (Siddhant et al., 2022). We collect aligned
Bible verses (pap and pov) and aligned sentences
from available editions of Jehovah’s Witnesses
Watchtower (JWW) series'! (pap, pov and kea).
We also collect non-religious parallel sentences
from a random sentence generator (pap), an article
about internet access (pov), and the glosses from a
por-pov bilingual dictionary (we translate the por
glosses into eng using Google Translate).

Portuguese Since our focus is on Lusophone Cre-
oles, we hypothesise that adding high-quality eng-
por data can improve transfer learning. We down-
load the eng-por Tatoeba Translation Challenge
Dataset (Tiedemann, 2020), which is a collection
of all data in OPUS, shuffled and deduplicated.
We use the corresponding Bicleaner-Al (Zaragoza-

*The private pap-eng dataset (used for model training but
not publicly released) includes additional parallel data from
CreoleVal (Lent et al., 2024), a textbook, the JHU bible corpus
(McCarthy et al., 2020), the QED corpus (Lamm et al., 2021)
and Ubuntu texts from the OPUS corpus.

"https://www.churchofjesuschrist.org/study?la
ng=pap. This dataset was shared directly by the organisers as
it is not on HuggingFace yet.

8https ://tatoeba.org/en/downloads

9https://www.scribd.com/document/119363393/Pa
rleremo-English-Papiamento-Papiamento-English-D
ictionary-1led

1%We later found small parallel resources for aoa, fab and
pre; while it was too late to include these sources in our model
training, we list these sources in Table 6 for future reference.

""JWW is a monthly Bible study resource which is mostly
about religious matters but also includes some discussion of
more general topics.

Bernabeu et al., 2022) scores'? to aggressively filter
the dataset. Bicleaner-Al is a neural metric that es-
timates how likely it is that a sentence pair is a
translation. We keep only sentence pairs with a
Bicleaner-Al score of 1.0 to ensure high quality,
leaving us with a seed dataset of 112k sentences
(representing 0.03% of the total Tatoeba dataset).

3.1.3 Additional Monolingual Data

We also collect monolingual Creole data, including
a high school textbook (kea), a blog series (kea),
glosses from an unpublished monolingual dictio-
nary (pov) and transcriptions of a documentary
(pov). The JWW Series (see Section 3.1.2) in cri
is hosted on a different website from the eng, pap,
pov and kea versions; as this makes it impossible
to align the cri data with the eng data, we instead
collect JWW as a monolingual resource for cri.

3.1.4 Lexicons

In order to experiment with post-editing with LLMs
and lexicons, as demonstrated in Nielsen et al.
(2025), we collect bilingual lexicons for each of our
seven Creoles of focus. For aoa, we could not find
a publicly-available lexicon, and instead manually
curate a small set of parallel lexical items using
word-aligned entries from IMT Vault.!? For pap,
we use both the GATITOS lexicon (Jones et al.,
2023) and a newly collected traditional lexicon.

3.2 Synthetic Data

We backtranslate all sources of monolingual data
into eng using the KMT model that scores the high-
est ChrF on the KMT test set for that language
pair.'* We also use kreyol-mt (the single best
KMT model) as a ‘teacher’ model, using it to for-
ward translate the eng sentences from the pap, kea,
pov and cri parallel datasets into each Creole via
Sequence-Level Distillation (Seq-KD) (Kim and
Rush, 2016)."> These distilled datasets allow us to
train models which better imitate the distribution
output of the KMT model at sentence-level.

12h’ctps ://github.com/Helsinki-NLP/Tatoeba-Cha
llenge/blob/d34a89ac102fd236503a1911dd1050564bf4
e682/BicleanerScores.md

Bhttps://imtvault.org/?languageiso6393%5B0%5D
=aoa

“kreyol-mt for cri and kea; kreyol-mt-pubtrain for
pap and pre; and kreyol-mt-scratch for pov. We used the
publicly available TestkmT set to select which models to use
for back-translation before realising that the Shared Task test
set would be identical to the publicly available test set.

>We do not use distillation for aoa, fab and pre because
the KMT model demonstrates ChrF scores which are too low
to generate reasonable forward translations.
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3.3 Data Pre-processing

We use all novel collected data for training and
evaluation, except the bilingual lexicons which we
reserve for post-editing experiments. We first re-
move any pairs of parallel sentences from our novel
datasets where either the source (src) or target
(tgt) sentence is in that language pair’s Testgmr
dataset, to ensure we do not train on any test data.
We then split out 10% of our novel cri, kea, pap
and pov data (up to a limit of 1,000 sentences) for
both validation and test data. We combine our train-
ing and validation splits with Traingy and Valgmr
respectively, but keep Testgmt separate from our
own test data (Testoy,s) for evaluation purposes.

To clean each data split, we remove duplicates,
empty or identical src/tgt pairs, and pairs where
src or tgt have more than 150 or fewer than three
words. We also discard pairs where the ratio of the
length of the src to the tgt sentence is unusually
high or low, following Robinson et al. (2024). Fi-
nally, we normalise special characters like quotes,
dashes, and Unicode Hex codes.

We noted that several sentences'® from Traingyr
and Validationgyr included multiple eng glosses
for a single Creole sentence. For example, the cri
sentence “E tava ka vivé ni Liboké.” has the eng
gloss “He was living in Liboké. OR: He used to live
in Liboké.” To reduce ambiguity at train time, we
split each of these double glosses into two separate
eng sentences. For Traingyr, we duplicate each
Creole sentence and use each eng gloss to create
two pairs of parallel sentences; for Validationgyr,
we retain only the first gloss as the eng translation
of each Creole sentence.

Table 1 shows the combined dataset sizes after
pre-processing. For complete details on the train,
validation, and test splits for each language, includ-
ing both our data and the organizer-provided data
before and after cleaning, see Tables 7, 8 and 9.

Train Val. TestKMT Test0urs All
pap 105,805 1,085 1,967 1,000 109,857
pov 43,699 1,027 33 1,000 45,759
kea 9,438 1,084 163 1,000 11,685
cri 1,376 189 33 155 1,753
pre 105 36 36 0 177
aoa 71 35 39 0 145
fab 61 31 38 0 130

Table 1: Numbers of Parallel Sentences (with eng) for
each language pair, ordered by size of dataset.

16Specifically, those collected from the APIiCS data source.

4 Models

To create our MT systems, we fine-tune the three
multilingual pre-trained translation models de-
scribed in Section 2: KMT (Robinson et al., 2024),
mBART-50 (Tang et al., 2021), and NLLB (NLLB
Team et al., 2022). We explain our approach for
fine-tuning each model below, listing additional
training configuration details in Appendix E.

4.1 Baselines

The baseline models specified by the organisers
for the unconstrained track of the Systems Subtask
were CreoleM2M (Lent et al., 2024) and kreyol-mt
(Robinson et al., 2024).!7 Both were created by
fine-tuning m2m mBART-50 (Tang et al., 2021)
on private datasets. While CreoleM2M performs
slightly better than kreyol-mt on pap-eng and
eng-pap translation, it does not support our other
six Creoles of focus, and so for simplicity we use
kreyol-mt as our experimental baseline.

4.2 Our Models

Fine-tuned KMT We first explore whether we
can improve the performance of the baseline
kreyol-mt model'® by fine-tuning it further on our
datasets using PyTorch Lightning (Falcon and team,
2019). We use kreyol-mt’s existing language tags
and embeddings for each Creole.!” Like mBART-
50, kreyol-mt has 611M parameters and a Senten-
cePiece (Kudo and Richardson, 2018) vocabulary
of 250k subwords.

Fine-tuned mBART-50 We then explore
whether we can recreate our own version of
kreyol-mt by fine-tuning the m2m version of
mBART-50 on our novel datasets using Fairseq (Ott
et al., 2019). As the English-centric many-to-one
(m20) and one-to-many (o2m) versions of
mBART-50 have been shown to outperform their
m2m counterpart (Liu et al., 2020), we also use
these models for fine-tuning. All three mnBART-50

"While these baselines were listed on the Shared Task
website, organisers clarified afterwards that kreyol-mt has
been trained on portions of text from Testkmt, and that the
intended baseline was, in fact, kreyol-mt-pubtrain.

"®We chose to fine-tune kreyol-mt without realising that
its training data included text from the public Testxmr set. The
results of these models on Testgmr are therefore inflated.

We note that kreyol-mt was trained with src language
tags appended to the end of each training src sentence (in
contrast to traditional mBART-50 language tagging in which
the src tag is prepended to the beginning of the src sentence).
We replicate the kreyol-mt tagging system for tokenising the
training, validation and test data.
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models share the same SentencePiece (Kudo and
Richardson, 2018) vocabulary of 250k subwords.
We repurpose existing language tags for our
unseen language pairs following Robinson et al.
(2024), initialising their embeddings randomly.
To compensate for the imbalance in dataset sizes
across languages, we use temperature-based
sampling with 7 = 2, which increases the relative
sampling probability of low-resource languages
and promotes more balanced training.

Fine-tuned NLLB As a state-of-the-art transla-
tion model designed specifically to perform well
on low-resource languages, NLLB (NLLB Team
et al., 2022) is also commonly fine-tuned for un-
seen language pairs in specific translation contexts
(Ebrahimi et al., 2023; De Gibert et al., 2025). The
largest NLLB model is a 54.5B parameter sparsely-
gated mixture of experts model; we use two smaller
distilled versions of this model (distilled-1.3B
and distilled-600M) for our experiments. While
pap and kea are already supported in NLLB, we
add additional language tags for the other five lan-
guages and initialise their embeddings randomly.
We use PyTorch Lightning for training as described
for fine-tuning kreyol-mt, except for fine-tuning
NLLB where we implement a maximum of 30 train-
ing epochs to keep total training time feasible.

Fine-tuning Experiments We first fine-tune
kreyol-mt, the three different versions of mBART-
50 and the two different versions of NLLB on
our dataset for three translation directions; all
Creoles into eng (XX-eng), eng into all Creoles
(eng-XX), and both of these directions simultane-
ously (XX-XX). We select the best overall setup for
each of the three base models for translation both
into and out of eng, and then repeat each of those
best setups for the following experiments:

1. Initialising embeddings for Creole language
tags with existing embeddings in each model
for por, instead of using existing Creole em-
beddings (for kreyol-mt models) or random
initialisation (for NLLB and mBART-50).%

2. Including eng-por or por-eng as an addi-
tional training direction, leveraging the high-
quality parallel data collected from Tatoeba
(see Section 3.1.2).

3. Using kreyol-mt distilled data (see Sec-
tion 3.2) as target side translations for fine-

For NLLB, as pap and kea are already supported lan-
guages in the pre-trained model, we do not reset the embed-
ding weights for these language tags in the same fashion.

tuning on pap, kea, pov and cri.

For each of these fine-tuned models, we find the
checkpoint with the highest scores across all lan-
guages on the validation set, and then use this best
checkpoint to evaluate that model’s performance
on Testgmt. Where any two experimental settings
show improvements on the basic setup for a given
base model, we also combine them together.

4.3 Model merging

To obtain most of our final models we applied
model merging using Arcee’s MergeKit framework
(Goddard et al., 2024), specifically the linear
method (Wortsman et al., 2022). We define three
different merging strategies: (i) averaging different
checkpoints of the same training run, (ii) merging
different (our) models or (iii) merging our models
with the kreyol-mt baseline model (i.e. federated
learning, as the training set of kreyol-mt is not
public). While the two first options were applied
to fine-tuned mBART-50 and NLLB models (de-
scribed in Section 4.2), the last option was applied
to the fine-tuned KMT models (Section 4.2). In
our experiments we merge between 3 and 5 check-
points, mostly from our internal finetuned models
(selecting based on best-performance on the valida-
tion dataset for specific language pairs), but also —
in the case of (iii) — external models. We note that
most of the time, this procedure meant averaging
three last checkpoints of our finetuned models.

4.4 Post-editing

With the lexicons we collected for each Creole and
the system outputs of the best models for each lan-
guage pair on the TestgymT dataset, we implement
post-editing with three LLMs; Gemini 1.5 Pro, Mis-
tral Large 2.1 and Open AI’s GPT 3.5 Turbo.?! Fol-
lowing Nielsen et al. (2025), our first prompting
strategy (P1) includes only the source sentence and
the system translation, while our second prompting
strategy (P2) includes the translations as well as the
entire lexicon for the relevant language pair. For
each of these two strategies, we experiment with
using the exact prompt proposed in Nielsen et al.
(2025) as well as our own prompt construction. All
four prompts are listed in full in Table 11 in Sec-
tion B. For pap, we repeat the experiment with both
the traditional bilingual lexicon and the GATITOS
lexicon (Jones et al., 2023).

2'Due to resource limitations, we did not use the paid Open-
Al model to post-edit the pap Testkmr dataset, which is over
ten times as long as the test sets for the other six languages.
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ID XX—eng eng—XX
pap pov kea cri pre fab aoa all pap pov kea cri pre fab aoa all
kreyol-mt 75.1 89.0 940 831 106 11.3 11.0 534 664 91.8 91.8 800 838 6.65 856 50.5
KMT1 754 692 911 735 318 147 199 537 68.0 564 712 642 194 129 175 442
A. + por embeddings 759 68.0 89.6 663 327 152 19.0 524 669 614 745 457 187 140 17.6 427
B. + por data 75.6 687 89.8 673 297 147 193 522 67.6 562 704 552 215 121 17.6 429
C. + distilled data 73.1 755 89.7 801 253 137 18.0 53.6 656 666 845 750 0.0 0.0 0.0 41.7
D.+A+C 71.8 725 865 645 369 154 183 523 630 719 81.6 525 166 123 155 448
MB1/MB2 76.1 49.6 633 339 507 208 267 462 731 324 441 265 264 170 283 354
A. + por embeddings 764 50.0 63.5 329 502 20.1 273 458 731 334 431 256 272 175 260 351
B. + por data 75.6 504 633 349 477 221 279 460 713 29.6 40.1 217 286 175 252 334
C. + distilled data 744 50.8 622 366 439 204 252 448 713 367 39.1 220 239 153 20.1 326
D.+A+B 75.6 540 632 359 484 194 27.1 462 715 293 395 222 241 17.1 248 326
NLLB1/NLLB2 833 555 705 248 356 204 210 444 77.1 525 563 281 234 184 24.6 40.1
A. + por embeddings 82.6 51.3 682 27.0 399 203 202 442 742 495 525 248 242 149 209 373
B. + por data 83.1 499 686 240 379 207 251 440 755 530 566 319 283 162 184 400
D.+A+B 83.0 49.7 720 246 314 206 195 430 773 538 56.7 261 260 184 220 400

Table 2: Results of fine-tuning experiments (A) initialising language embeddings with por embeddings; (B) adding high-quality
por data to training data; (C) using distilled data as training data for pap, kea, pov and cri, and (D) any relevant combinations
of the three conditions. Results calculated on Testkmr dataset, using single best checkpoint for each model (as evaluated on
validation set). Results in bold indicate best results for that language pair out of all experimental settings for that base model;

highlighted results are best out of all fine-tuned models (green = beats kreyol-mt baseline).

5 Results and Discussion

In this section, we report and discuss the results of
our fine-tuning experiments, model merging and
post-editing with LLMs. All results are calculated
using the ChrF metric*? (Popovié, 2015) imple-
mented in the SacreBLEU library (Post, 2018).23

Fine-tuning We find through initial fine-tuning
on our dataset that the best overall models for
translation into eng are kreyol-mt fine-tuned for
XX=XX translation (KMT1), mBART-50 m2m fine-
tuned for XX-eng translation (MB1) and NLLB
distilled-1.3B fine-tuned for XX-eng transla-
tion (NLLB1). We find the best overall models for
translation out of eng are kreyol-mt fine-tuned for
XX-XX translation (KMT1), mBART-50 02m fine-
tuned for eng-XX translation (MB2) and NLLB
distilled-1.3B fine-tuned for eng-XX transla-
tion (NLLB2). For each of these best setups, we
then implement our initial set of experiments by
retraining each model using por embeddings, por
data or distilled data, and then the combinations of
the two best settings for each base model.

The results in Table 2 show that different strate-
gies work best for different base models, directions
and language pairs — there is no single experimen-
tal setting that shows across-the-board advantages.
NLLB-based models (NLLB1/NLLB2) show the
strongest performance on translation to and from
pap, which is not surprising given that this is one

2Note that we use ChrF but the official Shared Task pro-
ceedings uses ChrF++.

Bhrefs:1 |case:mixed|eff:yes|nc:6|nw:0|
space:no|version:2.5.1

of NLLB’s supported languages and that the model
has seen large amounts of pap data during pre-
training. However, using distilled data does not
improve the NLLB1/NLLB?2 results for pap nor
any other language pairs, therefore we exclude the
results for this setting. The mBART-50-based mod-
els (MB1/MB2) outperform the other fine-tuned
models on aoa, fab and pre, except for eng-fab
translation. Their high performance on these lan-
guages (the lowest-resourced in the set) is likely
due to the temperature sampling strategy utilised
in our fine-tuning setup for mBART. Conversely,
the fine-tuned kreyol-mt model (KMT1) performs
better than the other fine-tuned models on kea, pov
and cri in both translation directions, particularly
when training on distilled data.

Our best model for kea, pov and cri (fine-tuned
kreyol-mt) does not beat the kreyol-mt base-
line in these languages, so we experiment further
with fine-tuning kreyol-mt. We therefore repeat
the three experiments while fine-tuning kreyol-mt
only for one translation direction at a time (XX-eng
or eng-XX), as well as fine-tuning on only the
highest-resource languages (cri, pov, kea and
pap). To further improve scores, we find each
model’s best checkpoint for each language pair
on the validation set and then use this checkpoint
to translate Testgyr for that language pair. Any of
these new models which improve on our previous
best results for a given language pair are included in
Table 13 in Section D, along with the per-language
checkpointed scores for the other best models per
language pair from Table 2.
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XX—eng eng—XX
D pap pov kea cri pre fab aoa all D pap pov kea cri pre fab aoa all
kreyol-mt 75.1 89.0 940 83.1 10.6 113 11.0 534 664 91.8 91.8 80.0 838 6.65 856 505
H1 739 574 674 364 553 282 351 505 H4 662 675 904 783 0.0 0.0 0.0 432
H2 844 683 723 376 395 223 219 496 H5 776 525 571 273 278 187 259 41.0
H3 76.8 809 936 823 240 127 19.1 556 H6 593 737 760 470 169 102 143 425
H4 739 814 929 763 229 137 17.8 54.1

Table 3: Results of model merging, calculated on Testkmr dataset. Results in bold indicate best results for that language pair
across all merged models; highlighted results are better than all other fine-tuned models (green = beats kreyol-mt baseline).

For translation into eng, fine-tuning kreyol-mt
for XX-eng translation only gave best results
for kea-eng and cri-eng (KMT?2). Fine-tuning
kreyol-mt for XX-XX translation but with distilled
data and only with the higher-resource Creoles
(pap, pov, kea and kea) improved results for pov-
eng translation (KMT3). For translation out of eng,
fine-tuning kreyol-mt for eng-XX translation only
gave best results for eng-kea and eng-pov, using
distilled data for the former (KMT4) and distilled
data plus initialisation with por embeddings for
the latter (KMT5). Despite these improvements,
no models beat kreyol-mt scores for pov, kea and
cri in either translation direction; and KMTI1C
remains our best-performing model for eng-cri.

Model Merging We create a total of six new
models by merging different combinations of our
fine-tuned and base models. Results across all lan-
guage pairs and translation directions are displayed
in Table 3. To improve performance on the lowest-
resource languages (aoa, fab and pre) we first
combine the best checkpoints of MB1B (2 check-
points) and MB1C (3 checkpoints), obtaining the
H1 model. For pap-eng we try averaging the last
three checkpoints of NLLB1 (H2) and for eng-pap
we take the same approach for NLLB2D (HS). For
pov, kea and cri, for XX-eng we try averaging
the last three checkpoints of KMT?2, but find no
improvements on our best scores and so exclude
this model from our results. For eng-XX we av-
erage the last three checkpoints of KMTS5 (H6),
obtaining a new best-score for eng-pov translation.
Finally, we explore whether incorporating the base
kreyol-mt model directly in the merging can im-
prove scores, combining the last three checkpoints
of KMT?2 with kreyol-mt (H3) and the last three
checkpoints of KMT1C with kreyol-mt (H4). Our
six model merges beat our existing best scores on
all language directions except eng-aoa, eng-fab
and eng-pre; yet our new best scores for transla-
tion from and into kea, pov and cri still do not
beat the kreyol-mt baseline.

Post-editing Finally, we take our best models for
each language direction and post-edit their Testgmr
outputs with different LLMs. We include a full list
of results in Table 14 in Section D. In most cases,
the LLM-edited outputs are worse than the original
system outputs, but we obtain modest improve-
ments for fab-eng, eng-fab, pre-eng, eng-pre
and eng-aoa translation. For every translation di-
rection, post-editing with the lexicon gives better
results than post-editing without the lexicon, even
for aoa which has only a small, hand-crafted lex-
icon. For pap, we obtain better results using the
traditional bilingual lexicon than the GATITOS lex-
icon, despite the fact that the GATITOS lexicon
is over three times larger than the former, poten-
tially indicating that the lexical items included in
the former are more useful for this test set domain.

Final models Out of all our finetuning, merging
and post-editing experiments, we select the best
systems to submit to the Shared Task, reporting
the performance of each system on the test set
in Table 4. The first submissions are generated
by the single best model for XX-eng translation
(merged model H3) and eng-XX translation (best
overall checkpoint of MB2, a finetuned mBART-50
model).>* The second submissions are generated
by the best models or checkpoints for each indi-
vidual language pair, except for eng-kea and eng-
cri where there is no better model or checkpoint
than Submission 1. We also include a third sub-
mission for translation directions where the LLM
post-editing resulted in improvements on the sec-
ond submission outputs.

6 Data Contamination

At the end of the Shared Task, Organisers commu-
nicated with us that the kreyol-mt model, one of

24We selected MB2 because, when evaluated on each lan-
guage with the best checkpoint per language, it showed the
highest average performance across all language directions.
However, we realised in hindsight that the best single check-
point across all language pairs was actually from KMTI1D.
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XX—eng eng—XX
pap pov  kea cri pre fab aoa pap pov kea cri pre fab aoa
kreyol-mt 75.1 89.0 94.0 831 106 113 11.0 664 918 918 80.0 838 6.65 856
Sub. 1 (H3/MB2) 76.8 80.9 93.6 823 240 127 19.1 73.1 324 441 265 264 17.0 283
Sub. 2 (best per LP) 84.4 81.4 553 282 351 77.6 737 904 78.0 41.7 257 33.6
Sub. 3 (Sub. 2 + LLM) 571 28.7 442 26.6 33.6

Table 4: ChrF scores for system submissions from best single models per translation direction (Sub. 1), best models per language
pair (Sub. 2) and best models per language pair + LLM post-editing (Sub. 3) on the Testkmt dataset (Bold = best score, green
highlight = beats kreyol-mt baseline). Unfortunately, XX-eng model outputs for Submission 2 (grey) were not submitted to the

Shared Task due to administrative error.

XX—eng eng—XX

pap pov kea cri pre fab aca pap pov kea cri pre fab aoa

kreyol-mt 684 428 579 373 600 11.0 104 603 297 516 274 893 547 955

Testotp g b ission 1 67.3 507 619 394 264 219 267 484 273 458 360 260 412 462
Submission2 644 397 - - 600 484 501 59.6 513 274 405 265 390 313

kreyol-mt 39.5 29.8 - - - - - 38.8 20.1 - - - - -

Testows g bmission 1 458 286 - § - § - 269 442 - ] ; § -
Submission2 = 67.6 462 - - - - - 495 184 - - - - -

Table 5: Results for kreyol-mt baseline model compared to our Submission 1 and Submission 2 models on Testgxmr.p and
Testous. Bold = best score, green highlight = beats kreyol-mt baseline.

the specified baseline models for the unconstrained
systems track, had been trained on some of the
Shared Task public test data; and the intended base-
line was kreyol-mt-pubtrain. This explains why
kreyol-mt scored so highly on the official test set
for certain language pairs (kea, pov and cri), and
why our models cannot beat it in these directions
despite additional data and modelling efforts.

For our submission, this clarification impacted
our experimental baseline and our finetuned or
merged models which use kreyol-mt as a base
model. This means a substantial proportion of our
submissions were affected.?’ To address this, we
re-evaluated both the kreyol-mt baseline and our
Submission 1 and Submission 2 models?® on two
further test sets:

* A decontaminated version of the KMT test
datasets (Testgmr.p) provided by the organ-
isers, with data not seen during training of
either kreyol-mt or kreyol-mt-pubtrain
(see dataset sizes in Table 10).

¢ Testours, Which is made of pap and pov data
we collected but did not use for training, in-
cluding data from domains not seen during
training of kreyol-mt (see dataset sizes in

BSpecifically, our finetuned and merged models which used
kreyol-mt as a base model included H3, H4, H5 and H6, used
for Submission 1 and Submission 2 for several language pairs.

%Due to resource and time constraints, we were not able to
repeat our LLM-post editing techniques (creating Submission
3) on the new test sets.

Table 7).7’

The results (Table 5) show that our Submission 1
and Submission 2 models outperform kreyol-mt
in 12 out of 14 translation directions (all ex-
cept pap-eng and eng-pap) on Testgmrp. On
Testous, our Submissions beat kreyol-mt in all
four translation directions, including pap-eng and
eng-pap. These results provide a more realistic
picture of the performance of the baseline and
our own models on the different language pairs,
without inflation on a contaminated test set. Fur-
thermore, kreyol-mt performs considerably worse
on the FLORES benchmark (Goyal et al., 2022)
for pap and kea (see Appendix C) than on either
Testgmt or Testxmtp. These results indicate that,
aside from the issue of data contamination, the
kreyol-mt model seems to be heavily overfitted
to KMT-style data and less good at generalising to
novel domains. We note that this may have also
degraded the quality of our backtranslated training
data, since we use three kreyol-mt models to back-
translate monolingual Creole data from different
domains into English (see Section 3.2).

Y"We split out this test data affer synthetically cre-
ating parallel data by using kreyol-mt-pubtrain and
kreyol-mt-scratch models to backtranslate monolingual
data (see Section 3.2). As a result, 13% and 15% of our pap
and pov test sets are made up of synthetic data. We also have
our own test data for kea and cri (see Table 7) but because a
much higher proportion of these splits are synthetic (63% and
100% respectively), we do not evaluate on this data here.
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7 Conclusion

Our submissions to the WMT 2025 Creoles MT
Systems Subtask utilise a range of known MT
techniques, including fine-tuning three pre-trained
multilingual translation models on both task data
and additional data, merging best models and
checkpoints and post-editing system outputs us-
ing LLMs. While no single fine-tuning, merging
or post-editing strategy emerged as best amongst
all language pairs, we observed considerable gains
over the baseline KMT model performance on the
Testgmt dataset for pap, aoa, fab and pre by com-
bining different approaches, including oversam-
pling the lowest-resource languages in the train-
ing data via temperature sampling. While some
of our results are unreliable due to the fact that
Testgmt 1s contaminated with kreyol-mt train-
ing data, we demonstrate the robustness of our
model’s performance using alternative test sets,
and show that kreyol-mt appears to be overfitted
to KMT-style data in general. Future work could
explore whether the techniques and strategies we
have utilised here to improve performance are also
useful for other Creole language pairs and across
data from a broader variety of different domains.

Limitations

The official Shared Task test sets for these lan-
guages are identical to the test sets which are pub-
licly available on Hugging Face, meaning that the
gold labels were available at the point of submis-
sion. We ensured that no samples from these
test sets were in our own training data. How-
ever, before we realised that the official test set
would be identical to the public one, we made
modelling and design decisions based on perfor-
mance on the publicly-available test set. For ex-
ample, we selected the best of the four kreyol-mt,
kreyol-mt-pubtrain, kreyol-mt-scratch and
kreyol-mt-pubtrain-scratch models for for-
ward translation and backward translation of our
training data based on their performance on the pub-
licly available test set, both per language and over-
all. We also selected our models for submission
based on their performance on this test set, given
that the gold labels were freely available. This bi-
ases our model development process towards this
particular test set, potentially reducing generalis-
ability or robustness of the overall MT systems and
potentially giving us an advantage in the context of
the Shared Task.

A key limitation of our work is that our mod-
elling decisions and comparisons were initially
guided by the kreyol-mt model, which was mis-
takenly announced as the Shared Task baseline.
The organisers later clarified that this model had
been trained on portions of the TestgyT set, mean-
ing not only that the baseline we were comparing to
was trained on the data we were testing on, but also
that our models which use it as a base model are
also likely inflated. We address this in Section 6 but
reiterate here that the results for our KMT-based
models in Table 2, and the results for H3, H4, H5
and H6 in Table 3 and Table 4 are likely inflated.

In addition, kreyol-mt was trained using a non-
standard tagging scheme, appending src language
tags to the end of source sentences rather than
prepending them as in standard mBART-50. Our
models inherit this convention, which may limit
comparability with other mBART-based systems.
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A Data Collection

Data Type L1 L2  Description Source No. items
por eng Tatoeba Translation Challenge Tiedemann (2020) 112,376
pap eng Bible data Bible.com 29,367
pap eng Watchtower Seriest The Jehovah’s Witnesses 4,275
pap eng Online Random Sentence Generator Sapaté, na bo sapatu! 5,936
pov eng Bible data Bible.com 29,876
Parallel pov eng Watchtower Series The Jehovah’s Witnesses 8,685
pov por Bilingual dictionary gloss sentences Dicionario Bilingue 1,603
pov eng Article on internet access Open Global Rights 18
kea eng Watchtower Series The Jehovah’s Witnesses 4,273
fab eng Translated stories Hagemeijer et al. (2020) 430
pre por Bilingual dictionary gloss sentences Aratijo and Araujo (2013) 81
aoca eng IMT Vault sentences IMT Vault 46
pov - Monolingual dictionary gloss sentences ~ Amarilio Da Mata* 6,930
pov - Documentary Subtitles Language and Society in Guinea-Bissau 254
pov - Song Lyrics Tino Trimé via Letras 177
Monolingual pap - Song Lyrics Lyrics Translates: 5,803
kea - School Textbook Lingua e Cultura Cabo-verdiana 10° ano 2,688
kea - Blogposts Odju d’Agu 2,357
kea - Song Lyrics Cesiria Evora via Letras 2,317
cri - Watchtower Magazine The Jehovah’s Witnesses 1,554
cri  por Bilingual Lexicon Dicionario livre santome/portugués 4,929
pap eng Bilingual Lexicon GATITOS 4,001
pap eng Bilingual Lexicon Parleremo 1,307
Lexical pov por Bilingual Lexicon Diciondrio Bilingue 1,983
kea eng Bilingual Lexicon Disonariu Kabuverdianu 1,763
pre por Bilingual Lexicon Aratijo and Araujo (2013) 1,684
fab eng Bilingual Lexicon Hagemeijer et al. (2020) 473
aoa eng Bilingual Lexicon IMT Vault§ 68

fCorsou dialect.

1 We collected only lyrics which were tagged exclusively with the pap language tag and no other language tags.
" This is an unpublished manuscript shared privately with the lead author. Lexical items and their definitions were made into full
sentences for the purposes of model training by appending each lexical item + ‘i’ (is) + definition.
¥ For aoa, we could not find an official lexicon and therefore manually curated a small set of parallel lexical items using the
word-aligned entries in the IMT Vault resource.

Table 6: Raw data sources and sizes. Rows shaded in gray were collected too late in the Shared Task period for us
to use for model training, but are included here in case useful for future research.
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https://imtvault.org/?languageiso6393%5B0%5D=aoa

Train Traincie.,  Validation Test AllT avg. length

pov 44,275 43,419 1,000 1,000 45,419 26.2
pap 43,381 40,850 1,000 1,000 42,850 23.3
kea 8,501 8,099 1,000 1,000 10,099 27.5
cri 1,244 1,218 155 155 1,528 14.4
aoa 0 0 0 0 0 0
fab 0 0 0 0 0 0
pre 0 0 0 0 0 0

fCalculated using cleaned training data.

Table 7: Numbers of parallel sentences for each language pair from our data, ordered from highest to lowest
resourced. For training data, we show the numbers of raw and cleaned sentences (e.g. after pre-processing). Average
length is calculated as average number of words per sentence across all data splits.

Train Trainciean  Validation Test Allf avg. length
pap 65,094 64,983 85 1,967 67,035 22.1
kea 1,470 1,340 84 163 1,587 16.6
pov 389 284 27 33 344 5.8
cri 209 155 34 33 222 6.0
pre 147 105 36 36 177 5.8
fab 109 61 31 38 130 54
aoa 99 71 35 39 145 6.5

TCalculated using cleaned training data.

Table 8: Numbers of parallel sentences for each language pair from Organiser-Provided data, ordered from highest
to lowest resourced. For training data, we show the numbers of raw and cleaned sentences (e.g. after pre-processing).
Average length is calculated as average number of words per sentence across all data splits.

Train Traincie,,  Validation Test Allt avg. length
pap 108,475 105,698 1,085 2,967 109,750 22.6
pov 44,664 43,701 1,027 1,033 45,761 26.1
kea 9,971 9,439 1,084 1,163 11,686 26.0
cri 1,453 1,375 189 188 1,752 134
pre 147 105 36 36 177 5.8
fab 109 61 31 38 130 54
aoa 99 71 35 39 145 6.5

fCalculated using cleaned training data.

Table 9: Numbers of parallel sentences for each language pair from our and Organiser-Provided data, ordered
from highest to lowest resourced. For training data, we show the numbers of raw and cleaned sentences (e.g. after
pre-processing). Average length is calculated as average number of words per sentence across all data splits.

Test avg. length

pap 1,896 17.9
pov 23 2.9
kea 34 152
cri 33 4.8
pre 36 3.7
fab 34 6.8
aoa 35 6.2

Table 10: Numbers of parallel sentences for each language pair from the Decontaminated Organiser-Provided
Test set, ordered from highest to lowest resourced. Average length is calculated as average number of words per
sentence across all data splits.
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B Prompts used for LLM post-editing

Condition

Nielsen et al. 2025

Ours

1. Post-editing
without lexicon

P1A: You are asked to edit the fol-
lowing translation from {src_code} into
{tgt_code}. The proposed translation is
high-quality, but may have some incor-
rect words.

Please output only the translation of the
text without any other explanation.
{src_code}: {source}

{tgt_code}: {model_translation}

P1B: You are given a source sentence
and a translation.

Improve the translation from {src_code}
into {tgt_code}.

You must return ONLY the corrected
translation sentence, without explana-
tion or extra text.

Source: {source}

Translation: {model_translation}

2. Post-editing
with lexicon

P2A: You are asked to edit the fol-
lowing translation from {src_code} into
{tgt_code}. The proposed translation is
high-quality, but may have some incor-
rect words.

Note the following translations: Lexi-
con:

{lexicon_str}

Please output only the translation of the
text without any other explanation.
{src_code}: {source}

{tgt_code}: {model_translation}

P2B: You are given a source sentence,
a translation and a lexicon. Improve
the translation from {src_code} into
{tgt_code}.

You must return ONLY the corrected
translation sentence, without explana-
tion or extra text.

Source: {source}

Translation: {model_translation}
Lexicon: {lexicon_str}

Table 11: Prompts used in LLM post-editing experiments.

C FLORES Evaluation

Model pap—eng eng—-pap kea—eng eng—kea
Testkmr FLORES Testxmr FLORES Testkmr FLORES Testkmr FLORES

kreyol-mt-pubtrain 79.84 54.39 69.94 60.14 80.66 45.65 52.54 52.16
kreyol-mt 75.10 63.12 66.39 57.27 93.94 55.46 91.76 52.33
kreyol-mt-scratch-pubtrain ~ 74.68 47.17 69.36 55.54 70.23 37.22 49.46 46.98
kreyol-mt -scratch 71.82 60.73 67.19 55.06 89.85 50.83 81.67 49.04
nllb-200-distilled-600M 46.50 59.18 53.18 50.09 59.36 63.04 38.27 41.67
nllb-200-1.3B 58.40 68.88 56.58 55.08 62.68 65.86 41.09 43.02
nllb-200-distilled-1.3B 55.30 69.20 58.02 55.40 59.28 64.89 39.75 42.09
nllb-200-3.3B 60.90 69.16 58.78 55.66 63.69 67.46 43.92 45.76

Table 12: ChrF scores for each kreyol-mt model across language directions, evaluated on both Testgymr and
FLORES test sets.
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D Model Results

kreyol-mt kreyoljmt— Ours Best  Model ID Base model Fl.n e-tuning Additional setup
pubtrain Direction

pap 75.1 79.8 83.3 NLLB 150 NLLB 1.3B XX-eng -

kea 94.0 80.7 92.3 KMT24ea KMT XX-eng -

pov 87.8 63.4 78.4 KMT3,0v KMT XX=XX distilled data + HRLs Only
XX-eng aoa 109 17.0 34.8 MBI1Cyoa mBART-50 m2m  XX-eng distilled data

cri  83.1 31.7 80.5 KMT2.i KMT XX-eng -

fab 11.3 13.7 27.9 MBI1Bp mBART-50 m2m  XX-eng por data

pre 10.6 16.2 55.0 MB1Be mBART-50 m2m  XX-eng por data

all 53.2 432 55.0 KMT2a KMT XX-eng -

pap 66.4 70.0 77.3 NLLB2D,,, NLLBI15 1.3B eng-XX por embeddings + por data

kea 91.8 52.5 86.2 KMT4ea KMT eng-XX distilled data

pov 91.8 51.6 72.8 KMT5,0v KMT eng-XX por embeddings + distilled data
eng-XX aoa 8.6 13.6 33.6 MB2B,oa mBART02m eng-XX por data

cri  80.0 32.1 78.2 KMTI1Coeri KMT XX=XX distilled data

fab 6.7 9.3 259 MB2a mBART-50 02m  eng-XX -

pre 8.38 10.7 41.7 MB2 mBART-50 02m eng-XX -

all 50.5 343 46.1 MB2a4 mBART-50 02m  eng-XX -

Table 13: Settings and results of best-performing model checkpoints for each language. Results are calculated
on Testgmt dataset, using the best model checkpoint per language pair based on performance on the validation
dataset, as indicated with subscript. For evaluation of all translation directions, we report the models with the best
average scores using the best checkpoints for each language pair. New models not previously included in Table 2
are highlighted in gray. Green = beats kreyol-mt and kreyol-mt-pubtrain baselines.

XX—eng eng—XX
Prompt pap kea pov aoa cri fab  pre all pap kea pov  aoa cri fab pre all
Submission 2 models - 844 936 809 351 823 282 553 657 776 904 737 336 780 259 417 60.1
PIA - 762 540 334 504 252 465 476 - 740 462 309 560 249 348 445
GPT 3.5 Turb PIB - 742 551 315 511 254 474 475 - 687 416 296 503 252 324 413
- furbo P2A - 871 692 312 783 287 517 517 - 832 598 325 752 257 418 53.0
P2B - 8.1 635 323 629 246 466 518 - 752 558 332 670 251 404 495
P1A 794 840 572 31.6 572 262 483 549 715 826 476 316 670 235 360 514
Mistral Large 2.1 PIB 78.1 8l1.1 562 330 556 252 443 534 706 79.0 468 315 613 250 367 50.1
8¢ = P2A 831 913 797 298 66.1 240 571 61.6 741 889 61.6 32.1 642 258 424 55.6
P2B 81.7 857 686 342 578 281 S5I1.1 582 760 883 589 328 747 266 419 579
P2Agar 717 - - - - - - - 595 - - - - - - -
P2Bgar  70.8 - - - - - - - 662 - - - - - - -
PIA 83.1 843 584 307 520 266 507 551 740 755 463 243 461 228 292 455
Gemini 1.5 Pro PIB 78.8 751 478 275 442 237 400 482 700 635 384 245 377 251 268 408
- P2A 832 86.0 663 327 575 273 538 581 752 792 487 305 498 260 442 50.6
P2B 81.7 844 572 314 481 264 450 534 740 827 527 336 622 258 413 532
P2Agar 824 - - - - - - - 738 - - - - - - -
P2Bgar  80.1 - - - - - - - 720 - - - - - - -

Table 14: Results from post-editing best model outputs with three LLMs. P1 is post-editing without lexicon and P2
is post-editing with lexicon (see Table 11). Baseline scores are from models of Submission 2 for each language pair
(Table 4). Results in bold are best results for each LLM for each language pair; highlighted results = best out of all
LLMs (green = also beats Submission 2 baselines). We do not apply post-editing for GPT 3.5 Turbo for pap (which
has an extremely large test set) due to resource constraints.
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Submitted models Table 15 documents which
models we use to generate our Shared Task submis-
sions:

* For Submission 1, we select the single
best model for XX-eng translation (H3) and
eng-XX translation (best overall checkpoint of
MB2). We selected MB2 because, when eval-
uated on each language with the best check-
point per language, it showed the highest av-
erage performance across all language direc-
tions. However, we realised in hindsight that
the best single checkpoint across all language
pairs was actually from KMT1D.

* For Submission 2, where a model has multiple
checkpoints we submit the best checkpoint for
that language pair, as indicated with subscripts
(except for eng-kea and eng-cri where there
is no better model or checkpoint than Submis-
sion 1).

For Submission 3 we submit the best system
outputs after post-editing with LLMs when
this showed improvements on Submission 2.
We indicate which LLLM and which prompting
strategy (see Table 11) was applied in paren-
theses.

Due to administrative error, our Submission 2 mod-
els for the XX-eng direction were not submitted to
the official Shared Task.

Sub.1  Sub.2 Sub. 3
pap H3 H2
pov H3 H4
kea H3 H3
XX-eng cri  H3 H3
pre H3 H1 + Mistral (P2A)
fab H3 H1 + GPT (P2A)
aca H3 H1
pap MB2 H5
pov MB2 H6
kea MB2 H4
eng-XX cri MB2 H4
pre MB2 MB2,. + Gemini (P2A)
fab MB2 MB2ap + Mistral (P2B)
aoa MB2 MB2B,,. + Gemini (P2B)

Table 15: Model IDs for final system submissions.

E Fine-tuning Hyperparameters

KMT & NLLB We fine-tune KMT & NLLB
models using PyTorch Lightning (Falcon and team,
2019) on a single GH200 GPU (bf16). We set the

batch size to 32, use the Adam optimizer (Kingma
and Ba, 2015) with a learning rate 5e — 5, a warm-
up phase of 500 updates and maximum training
length of 30 epochs. The model performance is
validated using ChrF every 5,000 steps, early stop-
ping after three consecutive validations with no
improvement in ChrF score.

mBART We fine-tune mBART-50 using fairseq
(Ott et al., 2019) with a multi-gpu (4 A100 GPUs,
fP1A6). The data loader has used temperature-
based sampling (7 = 2). We set the batch size to
maximum of 1024 tokens, use the Adam optimizer
with a learning rate 3e—>5, a warm-up phase of 2500
updates and maximum training length of 40,000 up-
dates. Moreover, we applied label smoothing with
eis = 0.2, dropout of 0.3, and attention dropout
of 0.1. The three best checkpoints were retained
according to validation performance (based on the
validation loss value), with early stopping after 10
validation intervals.
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