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Abstract

Low-resource Indic languages such as As-
samese, Manipuri, Mizo, and Bodo face per-
sistent challenges in NMT due to limited par-
allel data, diverse scripts, and complex mor-
phology. We address these issues in the WMT
2025 shared task by introducing a unified
multilingual NMT framework that combines
rigorous language-specific preprocessing with
parameter-efficient adaptation of large-scale
models. Our pipeline integrates the NLLB-200
and IndicTrans2 architectures, fine-tuned using
LoRA and DoRA, reducing trainable param-
eters by over 90% without degrading transla-
tion quality. A comprehensive preprocessing
suite, including Unicode normalization, seman-
tic filtering, transliteration, and noise reduc-
tion, ensures high-quality inputs, while script-
aware post-processing mitigates evaluation
bias from orthographic mismatches. Experi-
ments across English↔Indic directions demon-
strate that NLLB-200 achieves superior results
for Assamese, Manipuri, and Mizo, whereas
IndicTrans2 excels in English↔Bodo. Evalu-
ated using BLEU, chrF, METEOR, ROUGE-L,
and TER, our approach yields consistent im-
provements over baselines, underscoring the
effectiveness of combining efficient fine-tuning
with linguistically informed preprocessing for
low-resource Indic MT.

1 Introduction

Low-resource Indic languages such as Assamese
(As), Manipuri (Mni), Mizo (Lus), and Bodo (Brx)
pose significant challenges for Neural Machine
Translation (NMT) due to data scarcity, script di-
versity, and linguistic complexity, often leading
to suboptimal performance (Kunchukuttan, 2020a;
Ramesh et al., 2023; Team et al., 2022a). This work
aims to address these limitations by developing an
efficient, parameter-optimized fine-tuning frame-

work tailored for such underrepresented languages
in the WMT 2025 shared task (Pakray et al.).

To address these gaps, we introduce a uni-
fied multilingual NMT pipeline tailored for low-
resource Indic languages, combining robust prepro-
cessing with parameter-efficient fine-tuning meth-
ods. We integrate No Language Left Behind
(NLLB-200) model (Team et al., 2022a) and
IndicTrans2 (Ramesh et al., 2023) model, fine-
tuning them using Low-Rank Adaptation (LoRA)
as proposed by Hu et al. (2021a) and Weight-
Decomposed Low-Rank Adaptation (DoRA) as
discussed by Zhao et al. (2023) to optimize per-
formance while maintaining computational effi-
ciency. Our preprocessing pipeline includes Uni-
code normalization, semantic filtering, translit-
eration (Kunchukuttan, 2020a), and noise reduc-
tion, ensuring high-quality input data for training.
NLLB-200, with its extensive multilingual cover-
age, is adapted for En↔As, Mni, and Lus, while
IndicTrans2, designed specifically for Indic lan-
guages, is fine-tuned for En↔Brx to leverage its
architectural strengths in low-data settings. The
methodology ensures fair model comparison by
maintaining consistent hyperparameters and eval-
uation settings across all language pairs, with key
contributions lying in the combination of efficient
fine-tuning, language-specific preprocessing, and
script normalization for Indic NMT.

Our contributions include: (1) the first system-
atic application of LoRA/DoRA to NLLB-200 and
IndicTrans2 for low-resource Indic languages, re-
ducing trainable parameters by over 90% with-
out sacrificing translation quality; (2) a novel pre-
processing framework addressing script diversity
and data noise, critical for morphologically com-
plex languages; and (3) a comprehensive evalu-
ation using BLEU (Papineni et al., 2002a), chrF
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(Popović, 2015), METEOR (Banerjee and Lavie,
2005), ROUGE-L (Lin, 2004), and TER (Snover
et al., 2006) metrics, demonstrating significant im-
provements over baseline approaches.

2 Related Work

Early work on translation involving Indic lan-
guages predominantly used statistical methods and
ad-hoc bilingual corpora. For example, Koehn
(2005a) introduced the Europarl corpus for SMT,
but no comparable large-scale corpus existed for
low-resource Indian languages (Kakum et al.,
2023). In practice, government and academic
groups built phrase-based systems on much smaller
data. India’s TDIL mission developed the Sampark
and Anuvadaksha translation programs by train-
ing phrase-based SMT models on limited domain-
specific corpora. Similarly, Kunchukuttan and
Bhattacharyya (2014) compiled Sata Anuvadak,
a set of 110 SMT systems across Indian language
pairs. These efforts established early benchmarks
but exposed severe limitations due to data scarcity
and domain mismatch.

With the advent of neural models, en-
coder–decoder architectures with attention (Bah-
danau et al., 2015) and Transformers (Vaswani
et al., 2017) became standard. Researchers trained
RNN and then Transformer-based NMT systems
for English–Hindi and other Indic pairs, often using
byte-pair encoding and shared vocabularies. Mul-
tilingual and zero-shot strategies (Johnson et al.,
2017) enabled parameter sharing across related lan-
guages, benefiting extremely low-resource pairs.
Shared multilingual models improved translation
quality through inductive transfer, as shown in early
WMT shared tasks (Pal et al., 2023). Indic-to-
Indic multilingual training further enhanced per-
formance in cases of limited parallel data (Pakray
et al., 2024).

In recent years, large multilingual pre-trained
models have been employed for Indic MT. Models
like mBART (Liu et al., 2020) and mT5 (Xue et al.,
2021) provide off-the-shelf improvements, even for
Indian languages. In parallel, Indic-specific mod-
els such as IndicBART (Dabre et al., 2022) and
IndicTrans2 (Ramesh et al., 2023) have emerged.
These models were trained on carefully normal-
ized Indic corpora and have shown superior perfor-
mance in low-resource translation. IndicTrans2, in
particular, supports translation across all 22 sched-
uled Indian languages and 462 Indic language pairs,

making it one of the most comprehensive Indic MT
systems.

More recently, ultra-large multilingual models
and efficient fine-tuning methods have influenced
this domain. The NLLB-200 model (Team et al.,
2022b) introduced a massively multilingual archi-
tecture covering 200 languages, with strong perfor-
mance on low-resource Indic pairs. To adapt such
models efficiently, LoRA (Hu et al., 2021b) and
DoRA (Zhao et al., 2023) have been proposed, dras-
tically reducing fine-tuning cost while preserving
performance. Finally, preprocessing methods such
as Unicode normalization, script unification, and
transliteration (Kunchukuttan, 2020b) have been
shown to significantly enhance translation quality
for Indic languages. These developments form the
foundation for recent SOTA systems tailored to
low-resource Indic MT.

3 Analysis of Dataset

For the machine translation experiments, we
utilized the WMT 2025 corpus divided into two
categories: Category-1 (En ↔ {As, Lus, Mni})
with moderate training data availability, and
Category-2 (En ↔ Brx) with limited training data.
The following sections detail each language pair’s
parallel corpus specifications.

Table 1: Parallel sentences dataset statistics for both
Category-1 and 2.

Lang Pair Script Dataset Parallel sents

En - As Bengali Training 50000
Validation 2000
Test 2000

En - Mni Bengali Training 21687
Validation 1000
Test 1000

En - Lus Latin Training 50000
Validation 1500
Test 2000

En - Brx Devanagari Training 13693
Validation 1000
Test 1000

Table 1 summarizes the dataset sizes and scripts
used for each language pair. The pairs En-As and
En-Lus have the largest training sets (50k sentences
each), while the smallest ones are En-Mni and En-
Brx (21, 687 and 13, 693 sentences, respectively).
All language pairs are divided into validation and
test sets, where En-As and En-Lus have a larger test
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set (2, 000 sentences each), followed by En-Mni
and En-Brx (1, 000 sentences each). The scripts
are different by language, using Bengali for As and
Mni, Latin for Lus, and Devanagari for Brx.

Table 2: Sentence-level statistics for parallel corpora
across four Indic language pairs.

Lang Pair Avg. Sent.
Length

Pearson
Correlation Unique Chars

En - As En: 95.12
As: 91.29 0.7288

En: 137
As: 187

En - Mni En: 102.79
Mni: 103.70 0.9447

En: 145
Mni: 177

En - Lus En: 95.81
Lus: 97.73 0.8843

En: 119
Lus: 136

En - Brx En: 96.07
Brx: 101.77 0.9377

En: 114
Brx: 144

Table 2 shows sentence-level statistics of the par-
allel corpora and illustrates the observed linguistic
differences in the language pairs. The average num-
ber of words in an English sentence (En) ranges
from 95.12 (En-As) to 102.79 (En-Mni). On the
contrary, for target languages, the average num-
ber of words in a sentence is nearly the same or
slightly longer with Manipuri (Mni) at 103.70 and
Bodo (Brx) at 101.77. The Pearson correlation co-
efficients, which measure the degree of alignment
of sentence lengths of English with the target lan-
guages, show that En-Mni (0.9447) and En-Brx
(0.9377) have almost a perfect linear relationship,
indicating highly consistent translation lengths. In
contrast, En-As is least correlated (0.7288), mean-
ing sentence lengths vary more across translations.
The unique character count further reflects script
complexity, with Assamese (As: 187), Manipuri
(Mni: 177), Bodo (Brx: 144), and Mizo (Lus:
136). These statistics emphasize the diversity of
languages in the data, which impacts translation
modeling, especially for languages with rich mor-
phology or weaker sentence-length correlation.

4 Methodology and Implementation
Details

4.1 Data Preprocessing

• Unicode normalization is essential for ma-
chine translation in Indic languages be-
cause it ensures consistent text representa-
tion by converting multiple Unicode forms
into a standardized format, improving to-
kenization, reducing noise, and enhancing

alignment in parallel data. We have used
IndicNormalizer1 for Indic languages like
Assamese and unicodedata2 Normalization
Form-K Canonical Composition (NFKC) nor-
malizer for English language.

• Deduplication removes duplicate sentence
pairs from parallel corpora, maximizing data
utility for low-resource Indic machine transla-
tion. This is implemented by Python’s built-in
library set(), which removes duplicate sen-
tence pairs from datasets.

• Ratio Filtering is essential in machine transla-
tion to ensure balanced sentence-length pairs
by removing extreme mismatches, which
could otherwise introduce noise and misalign-
ment during training. Here, the implemen-
tation checks if the word-count ratio falls
within 0.5 to 2.0, retaining only pairs where
the target sentence is neither half nor double
the source length, thus preserving linguisti-
cally plausible alignments (Koehn, 2005b).

• Semantic filtering is crucial for Indic lan-
guage machine translation to remove poorly
aligned bilingual pairs that share surface-
level similarities but differ in meaning. This
is implemented using LaBSE (Feng et al.,
2022), a multilingual sentence embedding
model trained on 109 languages through a
translation ranking objective, which provides
language-agnostic representations without re-
quiring task-specific fine-tuning. We apply
cosine similarity scoring between sentence
embeddings, where pairs scoring below a 0.75
threshold are excluded from training data to
preserve semantic integrity. In our setup, we
employ LaBSE specifically for English-side
filtering to ensure high-quality parallel data
alignment.

• Length filtering is essential for machine trans-
lation to exclude excessively long sentences
that may exceed model context limits or con-
tain noisy data. This is implemented through
a simple character count check (150 words
maximum per sentence) applied uniformly to
both source and target texts.

1https://github.com/anoopkunchukuttan/indic_
nlp_library

2https://docs.python.org/3/library/
unicodedata.html

https://github.com/anoopkunchukuttan/indic_nlp_library
https://github.com/anoopkunchukuttan/indic_nlp_library
https://docs.python.org/3/library/unicodedata.html
https://docs.python.org/3/library/unicodedata.html
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Figure 1: Workflow diagram of proposed data prepro-
cessing pipeline.

• Language filtering: To maintain high-quality,
language-specific data for low-resource Indic
machine translation, we employ FastText’s
pretrained language identification model
(ft_model)(Joulin et al., 2017) to filter out
noisy or mixed-language text. The sentences
that are not confidently predicted as the tar-
get language are removed from the training
corpus. Suspicious samples are retained for
manual review to either: (1) salvage valuable
translation pairs, or (2) analyze common noise
patterns that could inform future data collec-
tion (Caswell et al., 2019).

• Text normalization: We perform lowercasing,
punctuation standardization, and spelling nor-
malization (handling common orthographic
variants) to reduce vocabulary sparsity. Ag-
gressive noise removal eliminates HTML
tags, non-linguistic symbols, and irregular
whitespace, particularly crucial for noisy user-
generated content in low-resource languages
like Assamese.

• Transliteration is essential for handling
named entities and rare words in low-resource

Indic language machine translation. We im-
plement a selective transliteration pipeline
using spaCy3 for tokenization and Named
Entity Recognition(NER), identifying words
with frequency less than or equal to 2 or la-
beled as named entities. These words are
transliterated from English to Indic scripts
such as Assamese, Manipuri, and Mizo using
the IndicTransliteration library4, via the
Harvard-Kyoto (HK) scheme. This preserves
phonetic structure and improves source-target
alignment, enhancing overall translation qual-
ity.

• Tokenization splits text into subword units,
crucial for handling morphologically rich In-
dic languages by addressing vocabulary spar-
sity and Out-of-Vocabulary (OOV) issues.
For Assamese, Manipuri, and Mizo, we use
Facebook’s NLLB-200-3.3B tokenizer with
a forced Beginning Of Sequence (BOS) to-
ken for target language specification. For
Bodo, we employ AI4Bharat’s Indictrans2
tokenizer, which supports multiple Indic lan-
guages via subword segmentation. Both to-
kenizers ensure compatibility with their re-
spective Seq2Seq models by setting padding
tokens dynamically.

4.2 Approach

This work utilizes the WMT dataset provided
by the organizers. Consistent with established
methodology for low-resource NMT, the data un-
derwent preprocessing (detailed in Section 3) be-
fore model input to optimize translation quality
for the target Indic languages. Given the focus
on low-resource languages, specifically Assamese,
Manipuri, Mizo, and Bodo, the model training
pipeline is designed to leverage existing multilin-
gual capabilities. In this study, two state-of-the-
art (SOTA) open-source multilingual NMT models
with pre-trained Indic language support are evalu-
ated. Both models are subsequently fine-tuned on
the preprocessed WMT dataset using LORA for pa-
rameter efficiency. Model selection is determined
by comparative evaluation across standard auto-
matic metrics: BLEU, chrF, METEOR, ROUGE-L,
and TER.

3https://github.com/explosion/spaCy
4https://github.com/indic-transliteration/

indic_transliteration

https://github.com/explosion/spaCy
https://github.com/indic-transliteration/indic_transliteration
https://github.com/indic-transliteration/indic_transliteration
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Figure 2: Bird’s Eye View of the Proposed Approach

The NLLB-200 model, developed by Meta AI,
is a 3.3 billion-parameter multilingual sequence-
to-sequence transformer that supports transla-
tion across 200 languages, including many low-
resource ones, achieving SOTA performance. To
fine-tune this model efficiently while preserving its
generalization capabilities, we employ Parameter-
Efficient Fine-Tuning (PEFT) as discussed by Xu
et al. (2023) via LoRA. This approach avoids full-
model fine-tuning by instead injecting trainable
low-rank matrices into the transformer’s attention
layers, drastically reducing the number of train-
able parameters while maintaining strong down-
stream task performance. The LoRA configuration
is applied to the query, key, value, and output pro-
jection layers (q_proj, k_proj, v_proj, o_proj)
of the NLLB-200 model. We set the rank (r) of
the low-rank matrices to 64, with a scaling fac-
tor lora_alpha (α) of 128 to balance adaptation
strength. A dropout rate of 0.1 is applied to the
LoRA layers for regularization, and no additional
bias terms are introduced. The model is then con-
verted into a PEFT model, and all trainable param-
eters are logged before transferring the model to a
CUDA-enabled 2× T4 Tesla GPU for accelerated
training.

To handle variable-length sequences efficiently,
we use a data collator specifically designed for
sequence-to-sequence tasks. This collator dynami-
cally pads input sequences to the longest length in
each batch while ensuring padding aligns to mul-
tiples of 8 for optimal hardware utilization (Wolf
et al., 2020). Label padding tokens (set to −100)
are masked to exclude them from loss computation
during training (Lewis et al., 2020). The train-
ing process leverages mixed-precision (FP16) arith-
metic via the Seq2SeqTrainer from the Hugging
Face Transformers library (Wolf et al., 2020). We
employ a global batch size of 8, achieved through
a per-device batch size of 4 and 2 gradient accumu-
lation steps, balancing training stability (Micikevi-

cius et al., 2018).
The optimization process uses AdamW with

fused CUDA kernels (adamw_torch_fused), con-
figured with momentum parameters β1 = 0.9 and
β2 = 0.98 (Loshchilov and Hutter, 2019). The
learning rate follows a cosine decay schedule, start-
ing from 3 × 10−5 with 1000 warmup steps to
ensure stable early training (Loshchilov and Hut-
ter, 2016). Model checkpoints are saved at the
end of each epoch, with the best model selected
based on BLEU score (higher is better) (Papineni
et al., 2002b). To improve evaluation efficiency,
the trainer is configured to generate predictions
during validation, enabling direct computation of
translation metrics. To optimize memory efficiency,
we disable caching (model.config.use_cache =
False), enabling gradient checkpointing at the cost
of modest recomputation (Chen et al., 2016). The
complete training system integrates our LoRA-
adapted NLLB-200 model with dynamic batching
and automated evaluation, maintaining multilin-
gual capabilities while specializing for target do-
mains. This approach enables efficient adaptation
of the 3.3B-parameter model, particularly valuable
for low-resource languages where data efficiency
is critical (Team et al., 2022a). The implementa-
tion demonstrates practical fine-tuning of massive
multilingual models within resource constraints,
balancing computational feasibility with transla-
tion quality.

On the other hand, the IndicTrans2, another
state-of-the-art multilingual NMT model devel-
oped by AI4Bharat, supports translation between
English and all 22 Indian languages, as well as
direct Indic-to-Indic translation across 462 lan-
guage pairs. It is optimized for high accuracy,
long-context translation with both large (1.1B)
and distilled (211M) model variants. It is fine-
tuned using the same PEFT-LoRA methodology
applied to NLLB-200. Identical LoRA hyperpa-
rameters (rank r = 64, α = 128) target the
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Table 3: Evaluation metrics (BLEU, METEOR, ROUGE-L, chrF, and TER) for translation directions from English
to four low-resource Indic languages for the evaluation dataset.

Language Pair BLEU METEOR ROUGE-L chrF TER

en-as 17.5352 0.4223 0.0073 57.7459 71.1716
en-mni 4.1514 0.1554 0.0113 43.8669 93.1607
en-lus 15.8280 0.4193 0.5480 51.9998 69.0074
en-bodo 19.7083 0.4549 0.1694 62.4723 64.9709

Table 4: Evaluation scores (BLEU, METEOR, ROUGE-L, chrF, TER, and Cosine Similarity) for Indic-to-English
translation directions for the evaluation dataset.

Language Pair BLUE METEOR ROUGE-L chrF TER Cosine Similarity

As-En 0.3715 0.0127 0.0224 14.2593 116.7097 0.0388
Mni-En 8.1004 0.4798 0.4947 49.5997 100.2915 0.7974
Lus-En 12.2975 0.5778 0.6198 58.1381 78.8102 0.8888

query/key/value projections and dense layers, with
DORA enhancing adaptation stability. We retain
the 8-bit quantization strategy and FP16 mixed-
precision training, but reduce gradient accumula-
tion steps to 2 (effective batch size 8) due to the
model’s smaller footprint. The cosine learning
rate schedule (3× 10−5 peak, 500 warmup steps)
and AdamW fused optimizer (β1 = 0.9, β2 =
0.98) mirror the NLLB configuration, as does the
BLEU-optimized checkpointing regime. Dynamic
batching via DataCollatorForSeq2Seq maintains
padding efficiency, while disabled caching ensures
memory headroom on T4 GPUs. This consistent
approach allows fair comparison between the two
SOTA multilingual systems while respecting their
architectural differences.

In our evaluation pipeline, we adopt a system-
atic approach to compute evaluation metrics for
assessing the translation quality of the two mod-
els. Before evaluation, the model-generated text
is preprocessed once more to enhance the reli-
ability of metric computation for the target lan-
guage. After obtaining predictions and correspond-
ing reference labels, both sequences are decoded
using the tokenizer, with special tokens skipped
during decoding. To ensure compatibility with
BLEU and other metrics and to correctly handle
padding label tokens, marked as −100 are replaced
with the tokenizer’s padding token ID. A key com-
ponent of our implementation is the use of the
indic_transliteration library (Kunchukuttan,
2020b), which converts the predicted text into the
appropriate target language script. This translit-

eration step is crucial because, in the case of the
IndicTrans2 model, the outputs are internally gen-
erated in the Devanagari script. In contrast, the
reference translations are provided in native Indic
scripts. Without this conversion, evaluation metrics
would be skewed due to script mismatches rather
than actual translation errors. Following translit-
eration, the decoded sequences are post-processed
by removing extraneous whitespace, and evalua-
tion is carried out using HuggingFace’s evaluate
toolkit (Lhoest et al., 2021), which provides ro-
bust and script-aware translation metrics for Indic
languages.

5 Results and Discussion

We evaluate the translation quality of the fine-tuned
models using a suite of established automatic eval-
uation metrics, with results presented in Tables 3
and 4. These results offer key insights into the rel-
ative difficulty and success of translating between
English and four underrepresented Indic languages
(i.e., Assamese, Manipuri, Mizo, and Bodo) in both
directions.

Table 3 reports the evaluation results for English-
to-Indic translation across four low-resource lan-
guages: Assamese, Manipuri, Mizo, and Bodo.
Among these, the English-to-Bodo direction
achieves the highest scores across multiple met-
rics, BLEU (19.70), METEOR (0.4549), and chrF
(62.47), indicating superior translation adequacy
and fluency under the proposed approach. For final
output generation, model selection was based on a
comparative analysis of evaluation scores obtained
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from IndicTrans2 and NLLB-200. The results
show that NLLB-200 consistently outperforms
IndicTrans2 for English-to-Assamese, Manipuri,
and Mizo translations, whereas for the English-to-
Bodo direction, IndicTrans2 demonstrates a clear
advantage, yielding better translation quality.

Table 4 presents the evaluation metrics for trans-
lations from Indic languages to English. Among
the language pairs, the Lus-En direction exhibits
the strongest performance across nearly all met-
rics, BLEU (12.29), METEOR (0.5778), ROUGE-
L (0.6198), chrF (58.13), and cosine similarity
(0.8888), indicating high lexical and semantic
alignment. In this translation direction, it was
observed that the NLLB-200 model consistently
outperforms IndicTrans2 for all three languages:
Assamese, Manipuri, and Mizo.

6 Conclusion

This study presents a comprehensive investiga-
tion into improving machine translation quality for
low-resource Indic languages through parameter-
efficient fine-tuning of large multilingual models.
Leveraging LoRA and DoRA techniques, we fine-
tuned both the NLLB-200 and IndicTrans2 mod-
els on a curated and rigorously filtered WMT2025
dataset. Our extensive preprocessing pipeline, tai-
lored to address the idiosyncrasies of Indic lan-
guages, proved essential in ensuring clean and se-
mantically aligned parallel corpora. The empirical
results underscore that while NLLB-200 exhibits su-
perior performance across most language pairs and
metrics, especially in English-to-Indic and Indic-to-
English directions involving Assamese, Manipuri,
and Mizo, IndicTrans2 offers competitive results
and even outperforms NLLB-200 in the English-to-
Bodo direction.

Notably, our integration of script-aware post-
processing and selective transliteration was instru-
mental in achieving faithful metric evaluations,
avoiding script mismatch penalties that would oth-
erwise misrepresent model performance. These
findings not only validate the efficacy of LoRA-
based adaptation in low-resource settings but also
highlight the value of task-specific linguistic pre-
processing for Indic languages. Our comparative
benchmarking, involving multiple metrics, reveals
the nuanced translation difficulty across language
pairs and emphasizes the importance of direction-
aware evaluations in multilingual NMT research.

Limitations

The WMT 2025 corpora, while suitable for bench-
marking, are inherently limited in scale and do-
main diversity for certain language pairs, particu-
larly English–Bodo and English–Manipuri. This
scarcity restricts the models’ ability to generalize
to informal, noisy, or domain-specific contexts.

Although the preprocessing pipeline is compre-
hensive, fixed thresholds in semantic filtering and
transliteration heuristics may inadvertently remove
valid rare sentences or alter named entities. Subtle
linguistic phenomena such as dialectal variation
and code-mixing remain insufficiently addressed.

Methodologically, the study is restricted to
LoRA and DoRA-based fine-tuning of NLLB-200
and IndicTrans2. Although this approach ensures
parameter-efficient adaptation, it does not investi-
gate other model architectures or combined train-
ing strategies that may more effectively address
unique linguistic characteristics. Similarly, the ex-
clusive use of automatic metrics provides repro-
ducible benchmarks but offers limited insight into
true semantic quality or culturally appropriate trans-
lations.
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48(4):237.

Philipp Koehn. 2005a. Europarl: A parallel corpus for
statistical machine translation. In MT summit, pages
79–86.

Philipp Koehn. 2005b. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of
Machine Translation Summit X: Papers, pages 79–86,
Phuket, Thailand.

Anoop Kunchukuttan. 2020a. The indic nlp library.
Accessed: 2025-07-30.

Anoop Kunchukuttan. 2020b. The indic nlp library.
Accessed: 2025-07-30.

Anoop Kunchukuttan and Pushpak Bhattacharyya. 2014.
Sata anuvadak: Tackling multiway translation for
indian languages. In Proceedings of WAT.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and compre-
hension. Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Quentin Lhoest, Benjamin Minixhofer, Siddhartha
Bandyopadhyay, et al. 2021. Datasets: A community
library for natural language processing. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 175–184. Association for Computational
Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Yinhan Liu et al. 2020. Multilingual denoising pre-
training for neural machine translation. In Transac-
tions of the Association for Computational Linguis-
tics.

Ilya Loshchilov and Frank Hutter. 2016. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. International Confer-
ence on Learning Representations (ICLR).

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Diamos, Erich Elsen, David Garcia, Boris Gins-
burg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. 2018. Mixed precision
training. In International Conference on Learning
Representations (ICLR).

Partha Pakray, Reddi Mohana Krishna, Santanu Pal, Ad-
vaitha Vetagiri, Sandeep Kumar Dash, Arnab Kumar
Maji, Saralin A. Lyngdoh, Lenin Laitonjam, Anupam
Jamatia, Koj Sambyo, Ajit Das, and Riyanka Manna.
Findings of WMT 2025 shared task on low-resource
indic languages translation. In Proceedings of the
Tenth Conference on Machine Translation (WMT /
EMNLP 2025).

Partha Pakray, Santanu Pal, Advaitha Vetagiri, Reddi
Krishna, Arnab Kumar Maji, Sandeep Dash, Lenin
Laitonjam, Sarah Lyngdoh, and Riyanka Manna.
2024. Findings of WMT 2024 shared task on low-
resource indic languages translation. In Proceed-
ings of the Ninth Conference on Machine Translation
(WMT 2024), pages 654–668, Miami, Florida, USA.
Association for Computational Linguistics.

Santanu Pal, Partha Pakray, Sahinur Rahman Laskar,
Lenin Laitonjam, Vanlalmuansangi Khenglawt,
Sunita Warjri, Pankaj Kundan Dadure, and
Sandeep Kumar Dash. 2023. Findings of the WMT
2023 shared task on low-resource Indic language
translation. In Proceedings of the Eighth Conference
on Machine Translation, pages 682–694, Singapore.
Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002a. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002b. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318. ACL.

https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://aclanthology.org/E17-2068
https://aclanthology.org/E17-2068
https://doi.org/10.1007/s12046-023-02308-8
https://doi.org/10.1007/s12046-023-02308-8
https://aclanthology.org/2005.mtsummit-papers.11
https://aclanthology.org/2005.mtsummit-papers.11
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1710.03740
https://arxiv.org/abs/1710.03740
https://doi.org/10.18653/v1/2024.wmt-1.54
https://doi.org/10.18653/v1/2024.wmt-1.54
https://doi.org/10.18653/v1/2023.wmt-1.56
https://doi.org/10.18653/v1/2023.wmt-1.56
https://doi.org/10.18653/v1/2023.wmt-1.56
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040


967
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