

TranssionMT's Submission to the Indic MT Shared Task in WMT 2025

ZeBiao Zhou and Hui Li and XiangXun Zhu and KangZhen Liu
Transsion, Shenzhen, Guangdong, China

Abstract

This study tackles the WMT 2025 low-resource Indic language translation task (EnglishAssamese, EnglishManipuri) by proposing a cross-iterative back-translation and data augmentation strategy using dual pre-trained models. Leveraging IndicTrans2_1B and NLLB_3.3B, the approach alternates fine-tuning and back-translation to iteratively generate high-quality pseudo-parallel corpora. Monolingual data relevance is enhanced via semantic similarity filtering with all-mpnet-base-v2, while training data is cleaned and normalized to improve quality. During inference, outputs from both fine-tuned models are combined to further boost translation performance in low-resource scenarios.

1 Introduction

India boasts a rich linguistic ecosystem, yet numerous languages suffer from limited digital resources. These low-resource languages face significant challenges in the construction and application of machine translation systems. Particularly, Assamese and Manipuri in the northeastern region not only lack parallel corpora and high-quality monolingual corpora but also exhibit large differences in linguistic structure and writing systems, posing additional difficulties for the training of Neural Machine Translation (NMT) models. Under low-resource conditions, traditional neural machine translation methods cannot fully leverage the advantages of large-scale data, resulting in limited model generalization ability and translation quality. Therefore, exploring how to efficiently utilize limited bilingual and monolingual data and effectively transfer cross-lingual knowledge has become a core issue in improving the translation performance of low-resource languages.

To tackle this challenge, this study participates in the WMT 2025 Low-Resource Indic Language

Translation track, focusing on two translation directions: EnglishAssamese and EnglishManipuri, and proposes a cross-iterative back-translation and data augmentation method based on dual pre-trained models. The study selects open-source IndicTrans2_1B and NLLB_3.3B as the core translation models, combines multiple rounds of iterative back-translation to generate high-quality pseudo-parallel corpora, uses semantic similarity filtering technology to enhance the alignment between monolingual data and the task, and reduces the interference of noisy data on training through strict data cleaning and standardization operations. During the inference phase, the outputs of the two models are compared and selected, with the optimal result serving as the final translation output. This study aims to verify the effectiveness of cross-model collaborative back-translation mechanisms, data similarity augmentation, and multi-source result fusion in low-resource translation tasks, providing reusable technical routes and empirical experience for future multilingual low-resource machine translation research.

2 Dataset

All parallel data used in this study are derived from the official bilingual data provided by the WMT 2025 Low-Resource Indic Language Translation track, covering two directions: EnglishAssamese (en-as) and EnglishManipuri (en-mni). The data scale is shown in Table 1. Among them, the en-as direction contains 54,000 training sentence pairs, the en-mni direction contains 23,000 training sentence pairs, and both directions provide validation sets and test sets respectively.

A sampling analysis of the official test set reveals a concentrated domain distribution: healthcare accounts for 65.29%, entertainment and sports for 23.56%, and culture for 11.15%. To maximize domain consistency with the test set during the

Language Pair	Train	Val	Test
en-as	54,000	2,000	2,000
en-mni	23,000	1,000	1,000

Table 1: Scale of WMT 2025 Official Bilingual Dataset

data augmentation phase, the study collects English monolingual data from the NLLB open corpus, BPCC open-source dataset, and specific website crawls. The open-source semantic similarity model all-mpnet-base-v2 is used to calculate the semantic similarity between the collected data and the test set samples. Sampling and filtering are performed in high-similarity data according to the above domain proportions, ultimately obtaining approximately 100,000 highly relevant English monolingual sentences for back-translation to generate pseudo-parallel corpora.

During the data cleaning phase, strict processing is uniformly applied to bilingual and monolingual data: removing sentences containing URLs, HTML tags, and non-linguistic characters; eliminating samples that failed to be translated or deviated from the source language in back-translation; standardizing symbols, checking and correcting English capitalization rules for the first letter; and removing duplicate sentences and abnormally short sentences. These operations significantly reduce the proportion of noisy data and ensure that the data domain distribution is highly consistent with the official test set, providing high-quality data support for subsequent cross-iterative back-translation and model optimization.

3 System Methodology

3.1 Pre-trained Models

This study is based on two open-source multilingual neural machine translation pre-trained models: IndicTrans2_1B (Kunchukuttan et al., 2023) and NLLB_3.3B (Fan et al., 2022).

- **IndicTrans2_1B:** A Transformer-based machine translation model optimized for 22 official languages of India and various related languages. It performs excellently in many-to-many, many-to-one, and one-to-many translation tasks, especially suitable for handling Indic languages with complex morphology and scarce training data (Kunchukuttan et al., 2023).

- **NLLB_3.3B (No Language Left Behind):** A large-scale multilingual translation model proposed by Meta AI, covering more than 200 languages and

possessing strong generalization ability in cross-lingual transfer (Fan et al., 2022).

The core reason for selecting these two models lies in their complementarity in multilingual environments: IndicTrans2_1B has obvious advantages in the fine-grained processing of Indic languages, while NLLB_3.3B is more robust in cross-lingual structure mapping and low-resource direction generalization. Their combination helps obtain more diverse and high-quality pseudo-parallel data under extremely low-resource conditions.

3.2 Direction-Specific Fine-Tuning

In the first phase of system construction, the above two models are respectively fine-tuned in one-to-one directions on the bilingual parallel corpora provided by WMT 2025, covering four translation directions: en→as, as→en, en→mni, and mni→en.

One-way translation fine-tuning at the granularity of translation directions enables the model to focus on learning the syntactic, lexical, and domain features of that direction. Compared with directly training a multilingual multi-directional model, it can avoid cross-direction interference and achieve higher convergence speed and better direction adaptability in low-resource scenarios. The training results of this phase serve as the baseline models for subsequent back-translation augmentation.

During the fine-tuning phase for NLLB_3.3B, LoRA (Low-Rank Adaptation) parameter-efficient fine-tuning technology is adopted, with specific configurations as follows (Hu et al., 2021):

- rank: 128
- alpha: 256
- dropout: 0.1
- Fine-tuning modules: All linear layers

LoRA injects low-rank matrix parameters into the model’s linear layers, keeping most original parameters frozen and only updating a small number of trainable parameters, which significantly reduces memory usage and training costs while maintaining model performance. This design is particularly effective for models at the 3.3B scale, enabling high-quality directional fine-tuning to be completed under single-card or low-resource computing power conditions (Hu et al., 2021).

3.3 Monolingual Data Back-Translation Augmentation

The second phase introduces 100,000 English monolingual sentences with a domain proportion

highly consistent with the test set to improve the model’s adaptability in the target domain. This monolingual data is sourced from the NLLB open corpus, BPCC open-source data, and domain-specific web crawls. It is matched and filtered with test set samples using the all-mpnet-base-v2 semantic similarity model to ensure the domain distribution proportion is consistent with the test set (65.29% healthcare, 23.56% entertainment and sports, 11.15% culture).

Based on the two fine-tuned models obtained in the first phase, dual-model back-translation is implemented, which is a widely used data augmentation technique in low-resource machine translation to generate pseudo-parallel corpora (Sennrich et al., 2016):

1. IndicTrans2_1B translates English monolingual sentences into the target language, generating pseudo-parallel corpus set D1;

2. NLLB_3.3B translates English monolingual sentences into the target language, generating pseudo-parallel corpus set D2.

D1 and D2 are respectively merged with the official parallel data to fine-tune IndicTrans2_1B and NLLB_3.3B again, forming the first-round augmented models. Taking "back-translation → merging → fine-tuning" as a cycle, the iteration is performed until the BLEU score of the development set no longer improves. In actual experiments, significant improvements can be achieved with two iterations, and the third iteration is difficult to bring additional benefits. Therefore, two iterations are finally adopted as the optimal solution.

This dual-model iterative back-translation augmentation method fully leverages the complementary advantages of the two pre-trained models in language modeling and cross-lingual generalization, significantly enriches the diversity and domain coverage of training data in low-resource directions, and thereby improves the translation performance of the final system (Sennrich et al., 2016).

4 Experimental Results and Analysis

Table 2 shows the BLEU score performance of different systems and data augmentation strategies in the four translation directions (en→as, en→mni, as→en, mni→en). The experiment compares the performance changes of IndicTrans2_1B and NLLB_3.3B under one-way fine-tuning on official data, different back-translation data augmentations, and dual-model iterative back-translation.

Strategy	en→as	en→mni
IndicTrans2-1B	16.33	10.28
+OFT-off	23.80	16.24
+OFT-off+BT-it	–	–
+OFT-off+BT-nllb	–	–
+OFT-off+BT-itnllb	25.92	24.34
NLLB-3.3B	17.04	15.01
+OFT-off	24.52	21.29
+OFT-off+BT-it	29.72	25.19
+OFT-off+BT-nllb	28.32	25.28
+OFT-off+BT-itnllb	30.61	27.71
+OFT-off+DBT (P2)	32.11	28.92
Strategy	as→en	mni→en
IndicTrans2-1B	29.20	34.74
+OFT-off	40.36	44.35
+OFT-off+BT-it	40.10	43.86
+OFT-off+BT-nllb	41.61	44.56
+OFT-off+BT-itnllb	–	–
NLLB-3.3B	30.88	30.77
+OFT-off	37.69	37.75
+OFT-off+BT-it	–	–
+OFT-off+BT-nllb	–	–
+OFT-off+BT-itnllb	–	–
+OFT-off+DBT (P2)	–	–

Table 2: BLEU Scores of Different Systems and Data Augmentation Strategies on WMT 2025 Development Set. Note: “–” indicates that this combination was not tested in this direction or the results were not included in the statistics. We use the following abbreviations: OFT denotes One-way Fine-Tuning, off denotes official data, BT denotes Back-Translation, it and nllb denote different back-translated datasets, LoRA denotes Low-Rank Adaptation, and DBT denotes Dual Back-Translation.

4.1 Significant Gains from One-Way Fine-Tuning

After one-way (one-to-one) fine-tuning using official parallel corpora, both baseline models show significant improvements in BLEU scores across all tested translation directions:

- IndicTrans2_1B increases from 29.20 to 40.36 (+11.16 BLEU) in the as→en direction, and from 34.74 to 44.35 (+9.61 BLEU) in the mni→en direction;
- NLLB_3.3B (LoRA fine-tuning) rises from 17.04 to 24.52 (+7.49 BLEU) in the en→as direction, and from 15.01 to 21.29 (+6.28 BLEU) in the en→mni direction.

239 The above results demonstrate that one-way fine-
240 tuning can effectively reduce multi-task interfer-
241 ence and improve translation quality in specific
242 directions under low-resource conditions.

243 **4.2 Single-Model Back-Translation 244 Augmentation Effect**

245 When introducing the first round of back-
246 translation augmentation, model performance con-
247 tinues to improve, but the effect depends on the
248 source of back-translated data:

- 249 • IndicTrans2_1B: Using back-translated data
250 from NLLB_3.3B (41.61 BLEU in the as→en
251 direction) is superior to using its own back-translated
252 data (40.10 BLEU); a slight gain is also maintained
253 in the mni→en direction (44.56 vs. 43.86);
- 254 • NLLB_3.3B (LoRA): Using back-translated
255 data from IndicTrans2_1B (29.72 BLEU in the
256 en→as direction) is better than self-back-translated
257 data (28.32 BLEU); the performance in the
258 en→mni direction is close (25.19 vs. 25.28).

259 This indicates that pseudo-parallel data gener-
260 ated across models has complementarity in syntac-
261 tic and lexical distributions, which can reduce noise
262 accumulation in self-back-translation.

263 **4.3 Dual-Model Back-Translation and 264 Iterative Optimization**

265 After adding the back-translated data of both mod-
266 els to the training simultaneously (dual-model
267 back-translation), NLLB_3.3B (LoRA) achieves
268 a BLEU score of 30.61 in the en→as direction and
269 27.71 in the en→mni direction; further performing
270 the second round of dual back-translation iter-
271 ation results in 32.11 BLEU in the en→as direction
272 (+1.50 compared to the previous stage) and 28.92
273 BLEU in the en→mni direction (+1.21). The re-
274 sults show that multiple rounds of back-translation
275 can bring additional benefits, but the marginal gain
276 diminishes.

277 **4.4 Value of LoRA Fine-Tuning**

278 Considering the 3.3B parameter size of
279 NLLB_3.3B, this study adopts LoRA (rank=128,
280 alpha=256, dropout=0.1, injected into fully
281 connected layers) for efficient one-way fine-tuning.
282 Under the premise of low memory usage, a
283 significant BLEU improvement is still achieved,
284 making multi-stage data augmentation possible
285 under limited computing power conditions (Hu et
286 al., 2021).

287 **5 Conclusion**

288 This study addresses the low-resource transla-
289 tion task by combining two complementary mul-
290 tilingual pre-trained models, IndicTrans2_1B and
291 NLLB_3.3B, and proposes a system construction
292 method of one-way fine-tuning for specific trans-
293 lation directions and dual-model iterative back-
294 translation augmentation. The introduction of
295 LoRA parameter-efficient fine-tuning technology
296 on NLLB_3.3B significantly reduces memory and
297 computational costs, enabling multi-stage data aug-
298 mentation under limited computing power condi-
299 tions.

300 Experimental results show that:

- 301 1. One-way fine-tuning can significantly im-
302 prove BLEU scores in low-resource translation di-
303 rections (up to +11.16 BLEU), effectively reducing
304 multilingual multi-directional interference;
- 305 2. Cross-model back-translation data aug-
306 mentation is superior to single-model self-back-
307 translation, proving that pseudo-parallel data gen-
308 erated by different models has complementarity in
309 syntactic and lexical distributions;
- 310 3. Dual-model back-translation + multi-round
311 iteration can further improve model performance,
312 although the gain tends to converge after the second
313 round;
- 314 4. LoRA technology balances efficiency and
315 effectiveness in the directional fine-tuning of ultra-
316 large-scale models, enabling the performance of
317 low-resource translation directions to approach the
318 improvement range of full fine-tuning (Hu et al.,
319 2021).

320 Overall, the system method in this study fully
321 leverages the complementary advantages of the
322 two pre-trained models, combines parameter-
323 efficient fine-tuning and dual-model iterative back-
324 translation, and achieves significant BLEU im-
325 provements in the WMT 2025 low-resource task,
326 providing a feasible and efficient reference scheme
327 for the construction of low-resource machine trans-
328 lation systems. Future work will further explore
329 adaptive back-translation data screening for multi-
330 model collaboration and the introduction of multi-
331 modal auxiliary information in low-resource sce-
332 narios to break through performance bottlenecks.

333 **6 Future Work**

334 On the basis of improving the low-resource trans-
335 lation performance achieved in this study, future

336 work will continue to expand in the following two
337 directions:

338 **6.1 In-depth Utilization of Monolingual Data**

339 Although parallel corpora for low-resource lan-
340 guages are limited, monolingual texts are often
341 relatively abundant. Future work will consider:

342 1. Continual Monolingual Pretraining: Conduct-
343 ing continuous training on existing models (such
344 as IndicTrans2_1B, NLLB_3.3B) using a large
345 amount of Indic monolingual data to improve lan-
346 guage fluency and localized expression ability;

347 2. Denoising Self-Supervised Training: Drawing
348 on methods such as mBART and MASS, en-
349 abling the model to better grasp contextual depen-
350 dencies and syntactic structures through tasks such
351 as Masked Span Prediction and Noising & Recon-
352 struction;

353 3. Combining Monolingual Back-Translation
354 and Forward Translation: Constructing bidirec-
355 tional pseudo-parallel data by combining monolin-
356 gual data, that is, adding forward translation data
357 generated from the target language to the source
358 language on the basis of back-translation, to further
359 improve the model’s generalization ability.

360 **6.2 Application of Large Language Models in 361 Translation**

362 With the development of multilingual Large Lan-
363 guage Model (LLM) capabilities, introducing them
364 into low-resource translation tasks has potential.
365 Future work will consider:

366 1. LLM-as-Translator: Using general-purpose
367 LLMs (such as Qwen, LLaMA, Mixtral, mT5) for
368 direct translation or back-translation to generate
369 higher-quality pseudo-parallel data that is more
370 contextually appropriate;

371 2. Parameter-Efficient Fine-Tuning (PEFT) for
372 Small Languages: Quickly adapting LLMs to spe-
373 cific small languages and domains through meth-
374 ods such as LoRA, Prefix Tuning, and Adapters,
375 reducing computational costs while improving per-
376 formance in low-resource scenarios;

377 3. Multi-Task Learning and Instruction-Tuning:
378 Simultaneously training tasks such as translation,
379 question answering, and paraphrasing on LLMs,
380 and improving their ability to understand and gen-
381 erate low-resource languages through multi-task
382 transfer effects.

References

383
384 Angela Fan and 1 others. 2022. No language left behind:
385 Scaling human-centered machine translation. *arXiv*
386 *preprint arXiv:2207.04672*.

387 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
388 Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
389 and Weizhu Chen. 2021. Lora: Low-rank adap-
390 tation of large language models. *arXiv preprint*
391 *arXiv:2106.09685*.

392 Anoop Kunchukuttan and 1 others. 2023. Indictrans2:
393 Towards high-quality and low-resource machine
394 translation for indic languages. In *Proceedings of*
395 *the 2023 Conference on Empirical Methods in Natu-*
396 *ral Language Processing*.

397 Rico Sennrich, Barry Haddow, and Alexandra Birch.
398 2016. Improving neural machine translation models
399 with monolingual data. In *Proceedings of the 54th*
400 *Annual Meeting of the Association for Computational*
401 *Linguistics (Volume 1: Long Papers)*, pages 86–96.