
1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

ACL 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Guideline for Annotating Named Entities in Computer Programming
Domain

Anonymous ACL submission

1 Definition of Software Entities

In this section, we define 28 different entities, that
we found in the StackOveflow corpus.

1.1 Application

Mention of software names (which is not referred
as code library) should be annotated with APPLI-
CATION. For example: Mosh, JKplayer, api-java-
client, java SDK, etc.

1.2 Language

Any mention of programming language name
should be annotated with LANGUAGE. For exam-
ple: Python, java, CSS, cpp etc.

1.3 Version

The numeric value or string referring to the ver-
sions of programming language or software or any
other entity should be annotated with VERSION.
For example: in the string ‘Python 2.7’, ‘Python’
should be annotated with LANGUAGE and ‘2.7’
with VERSION. Similarly in ‘Windows XP’, ‘XP’
is the version.

1.4 Algorithm

Any mention of algorithm or protocols should be
annotated with ALGORITHM. For example: UDP
(User Datagram Protocol), DFS, RBM, etc.

1.5 Operating System

All the mentions of OS names should be annotated
with OS. For example: linux, iOS, Windows etc.

1.6 Device

Any basic hardware requirement for software de-
velopment system should be annotated with DE-
VICE. For example: phone, mobile, GPU, etc.

1.7 Error-Name

The text that contains the name of an error should
be annotated with ERROR NAME. For example:
Overflow, OutofRange, Invalid Indices, etc.

1.8 User Name

If the text contains any mention of a username then
it should be annotated with USER NAME. For ex-
ample: John, Maya, Clark, etc.

1.9 Data Structure

The mention of any data structure element should
be annotated with DATA STRUCTURE. For exam-
ple: array, linked list, hash table, heap, etc.

1.10 Data Type

The text that contains the type description of vari-
ables should be annotated with DATA TYPE. For
example: string, char, double, etc.

1.11 Library

The name of the code frameworks or libraries
should be annotated with LIBRARY. We can think
it as the string we include in the code with with
#include/import statements. We are also in-
cluding name of frameworks and toolkits inside
libraries tags. For example: Numpy, Scipy. Auto-
grad API, toolkit, framework should be annotated
as library

1.12 Library Class

The class names defined under a Library LIBRARY

CLASS. For example: ItemTemplate, Persistent-
GenericSet, actionManager, etc.

1.13 User Class

The class defined by programmers should be an-
notated with CLASS. C Struct type should also be
annotated with CLASS, as it can be treated as a

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

class without function. For example: my Class,
Test Class, etc.

1.14 Library Variable

The variable defined under a library should be an-
notated with LIBRARY VARIABLE. For example:
math.inf, swing.color, ActonListener.Value, etc.

1.15 User Variable

The name of the variables/class/objects should be
annotated with USER VARIABLE. For example:
user id, numberOfRowsInSection, etc.

1.16 Library Function

The common code library functions should be an-
notated with LIBRARY FUNCTION. For example:
numpy.isinf(), Math.floor(), etc.

1.17 User Function Name

The name of the user defined functions should
be annotated with USER FUNCTION. For exam-
ple: any user defined function name : hello(),
my function(), etc.

1.18 File Type

If there is any mention of any file format name,
then it should be annotated with FILE TYPE. For
example: json, jar, etc.

1.19 File Name

If there is any mention of any file name, then it
should be annotated with FILE NAME. For exam-
ple: WindowsStoreProxy.xml, myaccess.htaccess
etc. We should also annotate the file name with
complete file path (if given), e.g., the string ‘my-
folder/myfile.txt’ should be annotated with FILE

NAME.

1.20 UI Element

The name of any user interface element should be
annotated with UI ELEMENT. For example: im-
age, button, scroll bar, text box etc.

1.21 Website

If there is any mention of any website name then it
should be annotated with WEBSITE. Note that we
only need to annotate the name of the websites.
We do not need to annotate links as the website.
For example: MSDN, Google, Yahoo etc.

1.22 Organization
Any mention of an organization name should be
annotated with ORGANIZATION. For example:
Apache, Microsoft Research, Fair, etc.

1.23 Licence
Any mention of a licence name should be anno-
tated as LICENCE. For example: Creative Com-
mons Attribution [Lincence] 4.0[version] Interna-
tional License.

1.24 HTML XML Tag Name
Any mention of a html tags/ user created xml tag
(and also the names like div class names) should
be annotated with HTML XML TAG NAME. For
example: 〈h1〉, 〈div〉, 〈img〉, etc.

1.25 Value
The tokens which contains value of a vari-
able or output of a function should be anno-
tated as VALUE. For example: “hello world”,
‘255.255.255.0’, 30.5, True, etc.

1.26 In Line Code
Any line of code should be annotated as IN LINE

CODE. For example: linux commands like: “grep
-rnw”, sql coammnads like “select * from Table
Car”, etc.

1.27 Output Block
Output of any system should be annotated as Out-
put Block. For example: Output from console/any
IDE

1.28 Keyboard Input
The name of any input keys should be annotated
as KEYBOARD INPUT. For example: CTRL+X,
ALT, fn, etc.

2 Basic Guideline

Each entity should be annotated in a way that it
contains the maximum span length. For example:

• ‘SGML parser’ instead of ‘SGML’

• ‘Chrome browser’ instead of ‘Chrome’

While annotating LIBRARY, LIBRARY-
CLASS, LIBRARY-FUNCTION, LIBRARY-
VARIABLE, APPLICATION, LANGUAGE entities,
we should Look for coresponding GitHub reposi-
tories to ensure the the correct entity tagging. In
any such GitHub repository exists, we should add
the link of the repository as note to the entity.

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Entity Example Count avg. #word avg. #char

CLASS ItemTemplate, PersistentGenericSet, actionManager 2202 1.09± 0.32 10.08± 5.43
APPLICATION Visual Studio, Weka, Homebrew, FFmpeg, Sonar Scanner 2019 1.23± 0.32 10.08± 5.43
VARIABLE key, value, pt, A 1607 1.07± 0.28 7.58± 5.79
UI ELEMENT textbox, wizard, button 1536 1.13± 0.38 6.44± 2.82
INLINE CODE -type d, alias.〈alias〉, adoqry.active := true 1358 2.65± 2.74 15.40± 18.26
FUNCTION .toLowerCase(), GmailApp.search(), search 1281 1.12± 0.62 11.07± 8.09
LANGUAGE python, java, c++ 1060 1.02± 0.15 4.55± 2.65
LIBRARY Pyspark, aws-java-sdk-core, OAuth 1186 1.17± 0.48 7.10± 3.62
VALUE “hello world”, ‘255.255.255.0’, 30.5, True 1188 1.64± 1.39 5.6±6.03
DATA STRUCTURE tree, stack, linkedlist 987 1.02± 0.14 5.26± 1.66
DATA TYPE string, integer, boolean, pointer 634 1.05± 0.26 6.44± 1.97
FILE TYPE exe, dll, rich text 556 1.01± 0.09 3.95± 1.66
FILE PATH Test.pdb, facebook consumer.js, config/modules.config.php 600 1.16± 0.67 13.35± 9.08
VERSION 2003 R2, 4.2.6-200.fc22.x86 64, XP 500 1.08± 0.39 3.76± 2.81
HTML XML TAG 〈div〉, span, br 277 1.07± 0.27 5.68± 3.81
DEVICE iPhone, Arduino MCU, 2d barcode scanner, nios cpu 361 1.19± 0.46 6.09± 3.25
OPERATING SYSTEM Linux, iOS, Android 303 1.10± 0.35 5.87± 2.14
WEBSITE stackexchange, GitHub, Codecourse, railstutorial.org 182 1.10± 0.37 7.65± 3.60
USER NAME Chris M, @KamranFarzami, M.Deinum 139 1.29± 0.53 7.63± 3.58
ALGORITHM A*-search, bubblesort, divide-and-conquer 60 1.48± 0.59 8.45± 5.34

Table 1: Software-specific entity categories in the StackOverflow annotated corpus.

3 Automated Annotation

Using the meta-data of StackOverflow corpus, we
provide the following automated annotations:

• Any part of text that appeared inside the
〈code〉-markdown tag is automatically anno-
tated with IN LINE CODE.

• Any part of text that appeared inside the
〈kbd〉 markdown tag is automatically anno-
tated with KEYBOARD INPUT.

• Any part of text that appeared inside the
〈blockquote〉 markdown tag is automatically
annotated with OUTPUT BLOCK

However, these automated annotations, ex-
tracted from StackOverflow user provided tags,
are not always correct. These automated tags were
corrected by adding the annotation for the missing
words and by removing the annotations from the
incorrectly tagged words.

4 Annotated NER corpus

While training the NER tagger, we found that,
some entities are quite infrequent. For example:

• OUTPUT BLOCK appeared 56 times in the
annotated corpus

• ERROR NAME appeared 43 times in the an-
notated corpus

• ORGANIZATION appeared 28 times in the an-
notated corpus

• KEYBOARD INPUT appeared 32 times in the
annotated corpus

• LICENCE appeared 10 times in the annotated
corpus

While training and testing the model, we re-
moved annotations for these five low frequency
entities.

We also merged similar entities like below:

• LIBRARY CLASS and USER CLASS as
CLASS

• LIBRARY FUNCTION and USER FUNCTION

as FUNCTION

• LIBRARY VARIABLE and USER VARIABLE

as VARIABLE

Table 1 shows the full corpus statistics after this
merging removal.

