Interpretability and Analysis in Neural NLP

Yonatan Belinkov, Sebastian Gehrmann, Ellie Pavlick

ACL Tutorial
July 5, 2020
Analysis Questionnaire

What is the goal of the study?

- Pedagogical / Debugging / Debiasing / …
- Understanding model structure / model decisions / data / …
- How do you quantify an outcome?

Who is your user or target group?

- ML or NLP Expert / Domain Expert / Student / Lay User of the System ...
- How much domain/ model knowledge do they have?
End-to-End Learning

- The predominant approach in NLP these days is end-to-end learning
- Learn a model $f : x \rightarrow y$, which maps input x to output y
End-to-End Learning

• For example, in machine translation we map a source sentence to a target sentence, via a deep neural network:

Mary did not slap the green witch

Maria no dió una bofetada a la bruja verde
A Historical Perspective

- Compare this with a traditional statistical approach to MT, based on multiple modules and features:
End-to-End Learning

- The predominant approach in NLP these days is end-to-end learning, where all parts of the model are trained on the same task:

```
Output

↑

Neural Network

↑

Input
```
How can we open the black box?

- Given $f : x \rightarrow y$, we want to ask some questions about f
 - What is its internal structure?
 - How does it behave on different data?
 - Why does it make certain decisions?
 - When does it succeed/fail?
 - ...
Why should we care?

- Much deep learning research:
 - Trial-and-error, shot in the dark
 - Better understanding \(\rightarrow\) better systems
Why should we care?

- Much deep learning research:
 - Trial-and-error, shot in the dark
 - Better understanding → better systems

- Accountability, trust, and bias in machine learning
 - “Right to explanation”, EU regulation
 - Life threatening situations: healthcare, autonomous cars
 - Better understanding → more accountable systems
Why should we care?

● Much deep learning research:
 ○ Trial-and-error, shot in the dark
 ○ Better understanding → better systems

● Accountability, trust, and bias in machine learning
 ○ “Right to explanation”, EU regulation
 ○ Life threatening situations: healthcare, autonomous cars
 ○ Better understanding → more accountable systems

● Neural networks aid the scientific study of language (Linzen 2019)
 ○ Models of human language acquisition
 ○ Models of human language processing
 ○ Better understanding → more interpretable models
Outline

- Structural analyses
- Behavioral analyses
- Interactive visualizations
- Other methods
Outline

- Structural analyses
- Behavioral analyses
- Interactive visualizations
- Other methods
Structural Analyses

- Let $f : x \rightarrow y$ be a model mapping an input x to an output y
 - f might be a complicated neural network with many layers or other components
 - For example, $f(x)$ might be the output of the network at the l-th layer
- Some questions we might want to ask:
 - What is the role of different components of f?
 - What kind of information do different components capture?
 - More specifically: Does components A know something about property B?
Structural Analyses

- Let \(f : x \rightarrow y \) be a model mapping an input \(x \) to an output \(y \)
 - \(f \) might be a complicated neural network with many layers or other components
 - For example, \(f(x) \) might be the output of the network at the \(l \)-th layer
Structural Analyses

- Let $f : x \rightarrow y$ be a model mapping an input x to an output y
 - f might be a complicated neural network with many layers or other components
 - For example, $f_l(x)$ might be the output of the network at the l-th layer

- Analysis via a probing classifier
 - Assume a corpus of inputs x with linguistic annotations z
 - Generate representations of x from some part of the model f, for example representations $f_l(x)$ at a certain layer
 - Train another classifier $g : f_l(x) \rightarrow z$ that maps the representations $f_l(x)$ to the property z
 - Evaluate the accuracy of g as a proxy to the quality of representations $f(x)$ w.r.t property z
Structural Analyses

- Let $f : x \rightarrow y$ be a model mapping an input x to an output y
 - f might be a complicated neural network with many layers or other components
 - For example, $f_l(x)$ might be the output of the network at the l-th layer
- Analysis via a probing classifier
 - Assume a corpus of inputs x with linguistic annotations z
 - Generate representations of x from some part of the model f, for example representations $f_l(x)$ at a certain layer
 - Train another classifier $g : f_l(x) \rightarrow z$ that maps the representations $f_l(x)$ to the property z
 - Evaluate the accuracy of g as a proxy to the quality of representations $f_l(x)$ w.r.t property z
- In information theoretic terms:
 - Set $h = f(x)$ and recall that $I(h; z) = H(z) - H(z \mid h)$
 - Then the probing classifier minimizes $H(z \mid h)$, or maximizes $I(h, z)$
Milestones (partial list)

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>x</th>
<th>y</th>
<th>g</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Köhn 2015</td>
<td>Word embedding</td>
<td>Word</td>
<td>Word</td>
<td>Linear</td>
<td>POS, morphology</td>
</tr>
<tr>
<td>Ettinger et al. 2016</td>
<td>Sentence embedding</td>
<td>Word, sentence</td>
<td>Word, sentence</td>
<td>Linear</td>
<td>Semantic roles, scope</td>
</tr>
<tr>
<td>Shi et al. 2016</td>
<td>RNN MT</td>
<td>Word, sentence</td>
<td>Word, sentence</td>
<td>Linear / tree decoder</td>
<td>Syntactic features, tree</td>
</tr>
<tr>
<td>Adi et al. 2017 Conneau et al. 2018</td>
<td>Sentence embedding</td>
<td>sentence</td>
<td>sentence</td>
<td>Linear, MLP</td>
<td>surface, syntax, semantics</td>
</tr>
<tr>
<td>Hupkes et al. 2018</td>
<td>RNN, treeRNN</td>
<td>five plus free</td>
<td>eight</td>
<td>Linear</td>
<td>Position, cumulative value</td>
</tr>
<tr>
<td>Hewitt+Manning 2019</td>
<td>ELMo, BERT</td>
<td>Sentence</td>
<td>Sentence</td>
<td>Linear</td>
<td>Full tree</td>
</tr>
</tbody>
</table>
Example Results

● Numerous papers using this methodology to study:
 ○ Linguistic phenomena (z): phonology, morphology, syntax, semantics
 ○ Network components (f): word embeddings, sentence embeddings, hidden states, attention weights, etc.

● We’ll show example results on machine translation

● Much more related work reviewed in our survey (Belinkov and Glass 2019)
Example: Machine Translation

- Setup
 - \(f \): an RNN encoder-decoder MT model
 - \(x \) and \(y \) are source and target sentences (lists of words)
 - \(g \): a non-linear classifier (MLP with one hidden layer)
 - \(z \): linguistic properties of words in \(x \) or \(y \)
Example: Machine Translation

● Setup
 ○ f: an RNN encoder-decoder MT model
 ○ x and y are source and target sentences (lists of words)
 ○ g: a non-linear classifier (MLP with one hidden layer)
 ○ z: linguistic properties of words in x or y

● Morphology:
 ○ A challenge for machine translation, previously solved with feature-rich approaches.
 ○ Do neural networks acquire morphological knowledge?
Example: Machine Translation

● Setup
 ○ f: an RNN encoder-decoder MT model
 ○ x and y are source and target sentences (lists of words)
 ○ g: a non-linear classifier (MLP with one hidden layer)
 ○ z: linguistic properties of words in x or y

● Morphology:
 ○ A challenge for machine translation, previously solved with feature-rich approaches.
 ○ Do neural networks acquire morphological knowledge?

● Experiment
 ○ Take $f'(x)$, an RNN hidden state at layer l
 ○ Predict z, a morphological tag (verb-past-singular-feminine, noun-plural, etc.)
 ○ Compare accuracy at different layers l
Example: Machine Translation

1. Train a neural MT system
2. Generate feature representations using the trained model
3. Train classifier on an extrinsic task using generated features

Pronoun
Classifier
Task: POS tagging
Machine Translation: Morphology

- Lower is better
- But deeper models translate better → what’s going on in top layers?
Example: Machine Translation

● Setup
 ○ f: an RNN encoder-decoder MT model
 ○ x and y are source and target sentences (lists of words)
 ○ g: a non-linear classifier (MLP with one hidden layer)
 ○ z: linguistic properties of words in x or y

● Syntax:
 ○ A challenge for machine translation, previously solved with hierarchical approaches.
 ○ Do neural networks acquire syntactic knowledge?

● Experiment
 ○ Take $[f(x_i); f(x_j)]$, RNN hidden states of words x_i and x_j, at layer l
 ○ Predict z, a dependency label ($subject, object$, etc.)
 ○ Compare accuracy at different layers l
Machine Translation: Syntactic Relations

- Higher is better
Machine Translation: Semantic Relations

- Higher is better
Hierarchies

Language
Hierarchy

Semantics
Discourse
Propositions
Roles

Syntax
Trees
Phrases
Relations

Morpho-Syntax
Parts-of-speech
Morphology
Lexicon
Hierarchies

Speech Hierarchy
- Words
- Syllables

Phonemes
- Complex
- Simple

Articulatory features
- Place
- Manner

Language Hierarchy
- Semantics
 - Discourse
 - Propositions
 - Roles
- Syntax
 - Trees
 - Phrases
 - Relations
- Morpho-Syntax
 - Parts-of-speech
 - Morphology
- Lexicon

Vision Hierarchy
- Scenes
- Objects
 - Object parts
 - Motifs
 - Edges
Probing Classifiers: Limitations

- Recall the setup:
 - Original model $f : x \rightarrow y$
 - Probing classifier $g : f(x) \rightarrow z$
 - g maximizes the mutual information between the representation $f(x)$ and property z
Probing Classifiers: Limitations

- Recall the setup:
 - Original model $f : x \rightarrow y$
 - Probing classifier $g : f(x) \rightarrow z$
 - g maximizes the mutual information between the representation $f(x)$ and property z

- Suppose we get an accuracy, what should we compare it to?
 - Many studies focus on relative performance (say, comparing different layers)
 - But it may be desirable to compare to external numbers
 - **Baselines**: Often, compare to using static word embeddings ([Belinkov et al. 2017](#)) or random features ([Zhang and Bowman 2018](#))
 - This tells us that a representation is non-trivial
 - **Skylines**: Sometimes, report the state-of-the-art on the task, or train a full-fledged model
 - This can tell us how much is missing from the representation
Probing Classifiers: Limitations

- Recall the setup:
 - Original model $f : x \rightarrow y$
 - Probing classifier $g : f(x) \rightarrow z$
 - g maximizes the mutual information between the representation $f(x)$ and property z

- Suppose we get an accuracy, what should we compare it to?
 - Hewitt and Liang (2019) define control tasks: tasks that only g can learn, not f
 - Specifically, assign a random label to each word type
 - A “good” probe should be selective: high linguistic task accuracy, low control task accuracy
 - Example
 - Linear vs. MLP
 - Accuracy vs. selectivity

<table>
<thead>
<tr>
<th>Model</th>
<th>Part-of-speech Tagging</th>
<th>Linear</th>
<th>Selectivity</th>
<th>MLP-1</th>
<th>Accuracy</th>
<th>Selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proj0</td>
<td>96.3</td>
<td>20.6</td>
<td></td>
<td>97.1</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>ELMo1</td>
<td>97.2</td>
<td>26.0</td>
<td></td>
<td>97.3</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>ELMo2</td>
<td>96.6</td>
<td>31.4</td>
<td></td>
<td>97.0</td>
<td>8.8</td>
<td></td>
</tr>
</tbody>
</table>
Probing Classifiers: Limitations

- Recall the setup:
 - Original model $f : x \rightarrow y$
 - Probing classifier $g : f(x) \rightarrow z$
 - g maximizes the mutual information between the representation $f(x)$ and property z
Probing Classifiers: Limitations

- Recall the setup:
 - Original model $f : x \rightarrow y$
 - Probing classifier $g : f(x) \rightarrow z$
 - g maximizes the mutual information between the representation $f(x)$ and property z

- What is g? What is the relation between the probe g and the model f?
 - Common wisdom: use a linear classifier to focus on the representation and not the probe
 - Anecdotal evidence: non-linear classifiers achieve better probing accuracy, but do not change the qualitative patterns (Conneau et al. 2018, Belinkov 2018)
Probing Classifiers: Limitations

- Recall the setup:
 - Original model $f : x \rightarrow y$
 - Probing classifier $g : f(x) \rightarrow z$
 - g maximizes the mutual information between the representation $f(x)$ and property z

- What is g? What is the relation between the probe g and the model f?
 - Pimentel et al. (2020) argue that we should always choose the most complex probe g, since it will maximize the mutual information $I(h; z)$, where $f(x)=h$
Probing Classifiers: Limitations

● Recall the setup:
 ○ Original model $f : x \rightarrow y$
 ○ Probing classifier $g : f(x) \rightarrow z$
 ○ g maximizes the mutual information between the representation $f(x)$ and property z

● What is g? What is the relation between the probe g and the model f?
 ○ Pimentel et al. (2020) argue that we should always choose the most complex probe g, since it will maximize the mutual information $I(h; z)$, where $f(x)=h$
 ○ They also show that $I(x; z) = I(h; z)$ (under mild assumptions)
 ■ Thus the representation $f(x):=h$ contains the same amount of information about z as x
 ○ Does this make the probing endeavor obsolete?
Probing Classifiers: Limitations

- Recall the setup:
 - Original model $f : x \rightarrow y$
 - Probing classifier $g : f(x) \rightarrow z$
 - g maximizes the mutual information between the representation $f(x)$ and property z

- What is g? What is the relation between the probe g and the model f?
 - Pimentel et al. (2020) argue that we should always choose the most complex probe g, since it will maximize the mutual information $I(h; z)$, where $f(x)=h$
 - They also show that $I(x; z) = I(h; z)$ (under mild assumptions)
 - Thus the representation $f(x):=h$ contains the same amount of information about z as x
 - Does this make the probing endeavor obsolete?
 - Not necessarily:
 - We would still like to know how good a representation is in practice
 - We can still ask relative questions about ease of extraction of information
Probing Classifiers: Limitations

- Recall the setup:
 - Original model $f : x \rightarrow y$
 - Probing classifier $g : f(x) \rightarrow z$
 - g maximizes the mutual information between the representation $f(x)$ and property z

- What is g? What is the relation between the probe g and the model f?
 - Voita and Titov (2020) measure both probe complexity and probe quality
 - Instead of measuring accuracy, estimate the minimum description length: how many bits are required to transmit z knowing $f(x)$, plus the cost of transmitting g
 - Variational code: incorporate cost of transmitting g
 - Online code: incrementally train g on more data
Probing Classifiers: Limitations

● Recall the setup:
 ○ Original model $f : x \to y$
 ○ Probing classifier $g : f(x) \to z$
 ○ g maximizes the mutual information between the representation $f(x)$ and property z

● What is g? What is the relation between the probe g and the model f?
 ○ Voita and Titov (2020) measure both probe complexity and probe quality
 ○ Instead of measuring accuracy, estimate the minimum description length: how many bits are required to transmit z knowing $f(x)$, plus the cost of transmitting g
 ○ Variational code: incorporate cost of transmitting g
 ○ Online code: incrementally train g on more data
 ○ Example
 ■ Layer 0 control: control accuracy is high (96.3) but at the expense of code length (267)

<table>
<thead>
<tr>
<th>LAYER</th>
<th>Accuracy</th>
<th>Code length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>93.7 / 96.3</td>
<td>163 / 267</td>
</tr>
<tr>
<td>1</td>
<td>97.5 / 91.9</td>
<td>85 / 470</td>
</tr>
<tr>
<td>2</td>
<td>97.3 / 89.4</td>
<td>103 / 612</td>
</tr>
</tbody>
</table>
Probing Classifiers: Limitations

- Recall the setup:
 - Original model $f : x \rightarrow y$
 - Probing classifier $g : f(x) \rightarrow z$
 - g maximizes the mutual information between the representation $f(x)$ and property z
Probing Classifiers: Limitations

- **Recall the setup:**
 - Original model $f : x \rightarrow y$
 - Probing classifier $g : f(x) \rightarrow z$
 - g maximizes the mutual information between the representation $f(x)$ and property z

- **Correlation vs. causation**
 - The probing classifier setup only measures correlation between representation $f(x)$ and property z
 - It is not directly linked to the *behavior* of the model f on the task it was trained on, that is, predicting y
 - Some work found negative/lack of correlation between probe and task quality ([Vanmassenhove et al. 2017, Cifka and Bojar 2018](#))
 - An alternative direction: intervene in the model representations to discover causal effects on prediction ([Giulianelli et al. 2018, Bau et al. 2019, Vig et al., in progress](#))
Outline

- Structural analyses
- Behavioral analyses
- Interactive visualizations
- Other methods
Behavioral Analyses

- Usually, we measure the *average-case* performance of $f : x \rightarrow y$ on a test set ${x,y}$, drawn uniformly at random from some text corpus.
- However, this can reward models for performing well on common phenomena, and hide the fact that they perform poorly on “the tail”.
- Challenge sets, a.k.a test suites aim to cover diverse phenomena:
 - Systematicity
 - Exhaustivity
 - Control over data
 - Inclusion of negative data
- Thus they facilitate *fine-grained* analysis of model performance.
- And they have a long history in NLP evaluation (Lehmann et al. 1996, Cooper et al. 1996, …)
Behavioral Analyses

- Key idea: Design experiments that allow us to make inferences about the model’s representation based on the model’s behavior.

Brett knew **what** many waiters find.

Brett knew **that** many waiters find.

Warstadt et al. (2020)
Behavioral Analyses

● Benefits:
 ○ Avoid “squinting at the data”. Objective criteria for what counts as “representing” a thing
 ○ Theory agnostic. No constraints on how you represent it (symbolic, neural, feature-engineered)
 ○ Interfaces well with linguistics and other fields. “We are all responsible for the same data”.
 ○ Practical--not whether the model represents a feature, but whether it uses it in the right way

● Limitations
 ○ What’s to blame, the model or the data? How do we know what generalizations are “fair”?
 ○ Only tells us *that* a model did/didn’t solve a task; few insights into *how* the model solved the task, or *why* it failed to
 ○ Hard to design tightly controlled stimuli, probing sets themselves can have artifacts
 ○ Risk of overfitting to the challenge sets
Behavioral Analyses

- See our [survey](#) for a categorization of many studies
 - Tasks
 - Especially machine translation and natural language inference
 - Linguistic phenomena
 - Morphology, syntax, lexical semantics, predicate-argument structure
 - Languages
 - Mostly focusing on English, some artificial languages, not much work on other languages
 - Scale
 - Ranging from hundreds to many thousands
 - Construction method
 - Either manual or programmatic
Tasks used as probing tasks

- Ideally, simple task interfaces which can support lots of model types
- Ideally, minimal need for training/finetuning on top of model being “probed”
<table>
<thead>
<tr>
<th>Task</th>
<th>Example</th>
<th>Typical Use</th>
<th>Strengths</th>
<th>Limitations</th>
<th>E.g.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM</td>
<td>The boy by the boats [is/*are] smiling.</td>
<td>Syntactic phenomena</td>
<td>No additional training on top of pretrained LM</td>
<td>Often uses ppl, so best for left-to-right language models. Harder to use for newer variants.</td>
<td>Linzen et al. (2016)</td>
</tr>
<tr>
<td></td>
<td>[Might add generation here, too]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acceptability</td>
<td>The boy by the boats [is/*are] smiling.</td>
<td>Syntactic and semantic phenomena</td>
<td>More flexible than LM across architectures; well studied in ling.</td>
<td>Usually requires additional training on top of LM.</td>
<td>Warstadt et al. (2020)</td>
</tr>
<tr>
<td>NLI</td>
<td>The boy is smiling. -> The boy [is/*is not] happy.</td>
<td>Semantics/pragmatics/world knowledge</td>
<td>Flexible, easy to “recast” many tasks to NLI; long history</td>
<td>Often awkward sentences/confounds; low human agreement</td>
<td>White et al. (2017)</td>
</tr>
<tr>
<td>QA</td>
<td></td>
<td>Semantics/pragmatics/world knowledge</td>
<td>Can be more natural than NLI; incorporates more context</td>
<td>Requires custom system architecture (e.g. reading documents)</td>
<td></td>
</tr>
<tr>
<td>MT</td>
<td>The repeated calls from his mother should have alerted us. Les appels rep´et´es de sa m´ere devraient `nous avoir alertes.</td>
<td>Multilingual morpho-/lexico-/syntax</td>
<td>Only way of specifically probing cross-lingual systems</td>
<td>Often relies on manual eval (though recent approaches use probabilities similar to in LM tasks)</td>
<td>Isabelle et al. (2017)</td>
</tr>
</tbody>
</table>
Experimental Designs

- Tightly Controlled
 - Minimal Pairs/Counterfactuals
 - Pros: Few confounds, more easy to attribute difference to the phenomena itself
 - Cons: Can be hard to generate; may not exist in a way that is natural
 - Good for phoneman that manifest neatly in the grammar (syntactic agreement, studying gender bias), but less so for complex phenomena (common sense/world knowledge)

<table>
<thead>
<tr>
<th>Gender Bias: Rudinger et al. (2018)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1a) The paramedic performed CPR on the passenger even though she/he/they knew it was too late.</td>
</tr>
<tr>
<td>(2a) The paramedic performed CPR on the passenger even though she/he/they was/were already dead.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subj.-Verb Agree.: Marvin and Linzen (2018)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. The farmer that the parents love swims.</td>
</tr>
<tr>
<td>b. *The farmer that the parents love swim.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Veridicality: White et al. (2018)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Someone {knew, didn’t know} that a particular thing happened.</td>
</tr>
<tr>
<td>Someone {was, wasn’t} told that a particular thing happened.</td>
</tr>
<tr>
<td>Did that thing happen?</td>
</tr>
</tbody>
</table>
Experimental Designs

● Loosely Controlled
 ○ Average over sets with vs. without property of interest
 ○ Pros: Can consist of naturalistic data; can generate larger test sets
 ○ Cons: Contain artifacts, harder to attribute differences to target phenomena

FraCas: Cooper et al. (1996)
GLUE Diagnostic Set: Wang et al. (2019)
Diverse Natural Language Inference Corpus (DNC): Poliak et al. (2018)
Experimental Designs

- **Adversarial Examples**
 - Design data sets (usually using minimal pairs or “perturbations”) that specifically emphasize a model’s weaknesses
 - Pros: Provides practical analysis of model failures; can be used as training to improve model
 - Cons: Sets age quickly and are model/data specific; “whack-a-mole” style progress

Construction Methods

● Sources of Data
 ○ Sentences drawn from existing corpora
 ○ Sentences drawn from existing benchmark sets/test suites
 ○ Templates
 ○ Manual Generation

● Example/Label Generation
 ○ Labels are given by-definition (e.g. if using templates or manual generation)
 ○ Automatically manipulate sentences and assume heuristic labels (+/- human filtering)
 ○ Purely automatic (e.g. adversarial)
 ○ Purely manual labeling (e.g. human generated examples)
Construction Methods

● Method: Entirely Manual
● Examples: Build-It-Break-It, Adversarial NLI
Construction Methods

- Method: Semi-Automatic + Crowdsourcing
- Examples: Poliak et al. (2018), Kim et al. (2019)
Construction Methods

- Method: Templates
- Examples: Ettinger et al. (2018), McCoy et al. (2019)
Construction Methods

- Method: Entirely Automatic
- Examples: Ebrahimi et al. (2018), Wallace et al. (2019)
Challenge Sets: Limitations

- Availability
 - Limited coverage of tasks and languages
 - Need to expand beyond English and to more NLP tasks
Challenge Sets: Limitations

- Availability
 - Limited coverage of tasks and languages
 - Need to expand beyond English and to more NLP tasks

- Methodology
 - What does failure on a challenge set tell us?
 - Who is to blame, the model or its training data?
 - Lie et al. (2019) fine-tune a model on a few challenge set examples and re-evaluate
 - Rozen et al. (2019) diversify both the training and test data
 - Geiger et al. (2019) propose method for determining whether a generalization task is “fair”
Outline

- Structural analyses
- Behavioral analyses
- Interactive visualizations
- Other methods
How many circles do you see?
Visualization can help you understand larger patterns
BUT… Visualization can lie. It was actually 17 😐
Interaction and Visualization

1) Theory (Why, What)
2) Practice (How, Who)
 a) Attn=Explanation? Useful to look at either way
 b) Toolbox (Collaborators / Your own?)
 c) Practical Attn Vis Example: (1) agree on an API, (2) Code Server/Model, (3) Code Client/Frontend
3) Broader Perspective
 a) Reusable Vis: exBERT module (can we combine with mini vis? Install or so?)
 b) Automation through frameworks: Captum / AllenAI Interpret / LIT?
 c) Tighter integration with models? CSI
Why?

Interactive methods help:

- To generate hypotheses around model behavior or a dataset
- Reduce the exploration space when it is too large for brute-force methods
- Asking counterfactual “what if” question to the model and data

Interactive methods can:

- Enable the application of methods to real-world problems
- Lower the entry barrier through effective teaching
- Give visibility and feedback for new methods

Recent Tools:

iNNvestigate Captum AllenNLP Interpret exBert
“A key element of the visualization approach is its ability to generate trust in the user. Unlike pure machine learning techniques, in a data visualization the user “sees” the data and information as a part of the analysis.

When the visualization is interactive, the user will be part of the loop and involved in driving the visualization. In such a context, the development of a mental model goes hand in hand with the visualization.“

[Endert et al., 2018]
<table>
<thead>
<tr>
<th>Overall Goal</th>
<th>PA</th>
<th>PVA Exclusive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Preprocessing</td>
<td>Clean and format data</td>
<td>Summarize and overview the training data</td>
</tr>
<tr>
<td>Feature Selection and Generation</td>
<td>Optimize prediction accuracy</td>
<td>Support reasoning and domain knowledge integration</td>
</tr>
<tr>
<td>Modeling</td>
<td>Optimize prediction accuracy</td>
<td>Support reasoning and domain knowledge integration</td>
</tr>
<tr>
<td>Result Exploration and Model Selection</td>
<td>Model quality analysis</td>
<td>Get insights; Select the proper model; Feedback for model updates</td>
</tr>
<tr>
<td>Validation</td>
<td>Test for overfitting</td>
<td>Get insights from other datasets</td>
</tr>
</tbody>
</table>

[Lu et al., 2017]
The tasks of a visual tool

Formulate Hypothesis
Groups of hidden states learn to capture linguistic properties

More accessible through “playing” with a model

Refine/Reject Hypothesis
The opening and closing of a parenthesis captured within a certain hidden state

Much faster with interactive tools

Compare models and datasets
Allow early generalization of insights

The design of the infrastructure of a VA tool can* be easily extensible to new models
User+Task Analysis does not just apply to vis!

Understand - Diagnose - Refine

Towards better analysis of machine learning models: A visual analytics perspective.
[Hohman et al. '18]

Architect - Trainer - End-User

LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks
[Strobelt, Gehrmann, et al. '16]

Visual analytics in deep learning: An interrogative survey for the next frontiers.
[Hohman et al. '18]

[Gehrmann, Strobelt, et al.'19]
Examples: **Passive Observation**
Examples: **Interactive Observation**
UX of Interaction (reading list)

Guidelines for Human-AI Interaction
[Amershi et al. ‘19]
Does the research process differ?

- **Vis/Interaction**
 - Low Fidelity Prototypes
 - Goal-driven rapid iteration
 - Tons and tons of pilot studies

- **ML**
 - Baseline Models
 - Dev-set driven hyperparameter exploration
 - Tons and tons of automatic evaluation

Note - Slide may contain cynical views on model development
Cell that turns on inside quotes:
"You mean to imply that I have nothing to eat out of.... On the contrary, I can supply you with everything even if you want to give dinner parties," warmly replied Chichagov, who tried by every word he spoke to prove his own rectitude and therefore imagined Kutuzov to be animated by the same desire.

Kutuzov, shrugging his shoulders, replied with his subtle penetrating smile: "I meant merely to say what I said."
Low Fidelity Prototypes Goal-driven rapid iteration Tons and tons of pilot studies

[Strobelt, Gehrmann et al. ‘16]
You have a cheap selection interface, now what?
Translation View (a)

“cheap and universal”

Neighborhood View (b)

“expensive and deep”

[Strobelt, Gehrmann et al. ‘18]
Connect Decisions to Previous Examples

lemma: training data = world view of model

pre-process: on trained model, record hidden state values for a large portion of the training data

inference: for new samples, find kNN of hidden states
[TODO: add overview of approaches here: Gradient-based, Influence Functions, challenge set reference for later, Statistics over entire corpus (kclark, iftenney), Train additional model]
Practical Attention Vis Example

Minimal Attention Vis

Select model: DistilBart
Enter a sentence: I dropped my pen in the mashed potatoes.

Results

Layers & Heads
Challenges compared to s2s attention

Filtering: We now have 100+ heads
Aggregation: How do we show multiple?
Key/Value/Query: What do we do with that?
The 1-day JS Prototype

 git clone https://github.com/SIDN-IAP/attnvis.git
 cd attnvis

install dependencies:
 conda env create -f environment.yml

get server to start without errors
 conda activate attnvis
 python server.py
Agree on an API between backend and visualization

```json
{
    "tokens": List[unicode string],
    "Attention": List[List[List[float32]]]
}
```

Note: this API does not support batching!
import torch
from transformers import AutoTokenizer, AutoModel

class AttentionGetter:
 '''Wrapper Class to store model object.'''
 def __init__(self, model_name: str):
 super().__init__()
 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 self.model = AutoModel.from_pretrained(model_name, output_attentions=True).to(self.device)
 self.tokenizer = AutoTokenizer.from_pretrained(model_name)
def bert_analyze_text(self, text: str):
 """Works for BERT Style models"""
 # Tokenize input.
 toked = self.tokenizer.encode(text)
 # Build tensor and unsqueeze batch dimension.
 context = torch.tensor(toked).unsqueeze(0).long()
 # Extract attention.
 attn = self._grab_attn(context)
 # Build payload.
 return {
 "tokens": self.tokenizer.convert_ids_to_tokens(toked),
 "attention": attn,
 }
def _grab_attn(self, context):

 function to get the attention for a model.
 First runs a forward pass and then extracts and formats attn.

 output = self.model(context)
 # Grab the attention from the output tuple.
 # Format as Layer x Head x From/To
 attn = torch.cat([l for l in output[-1]], dim=0)
 format_attn = [
 [[str(round(att * 100)) for att in head] for head in layer]
 for layer in tok
 for tok in attn.cpu().tolist()
]
 return format_attn
import json
import os

from flask import Flask as Flask,
from flask import request, redirect

from api import AttentionGetter

app = Flask(__name__)

Set up cache for model wrappers.
loaded_models = {}

redirect requests from root to index.html
@app.route('/

def hello_world():
 return redirect('client/index.html')

if __name__ == '__main__':
 app.run()
@app.route('/api/attn', methods=['POST'])
def attn():
 sentence = request.json['sentence']
 model_name = request.json.get('model_name', 'distilbert-base-uncased')

 # lazy loading.
 if model_name not in loaded_models:
 loaded_models[model_name] = AttentionGetter(model_name)
 model = loaded_models[model_name]

 # Call on the model to get attention
 results = model.bert_analyze_text(sentence)

 # return object with request (sentence, model_name) and results.
 return json.dumps({
 "request": {
 "sentence": sentence, 'model_name': model_name},
 "results": results
 })
<h3>Minimal Attention Vis</h3>

Select model:
<select name="" id="model_select">
 <option value="gpt2">GPT-2</option>
 <option value="distilbert-base-uncased">DistilBert</option>
</select>

Enter a sentence:
<input type="text" id="inputText"
 value="I dropped my pen in the mashed potatoes."
><button id="sendButton">send</button>

<hr>

<results style="padding-top: 5px;">
 Layers & Heads
</results>
// select input field.
const myInput = d3.select("#inputText");

// act when content changes.
myInput.on('change', () => triggerServerRequest());

// also act on clicking the send button.
d3.select('#sendButton').on('click', triggerServerRequest());

function triggerServerRequest (){
 // get input content and bind to var.
 const input_sentence = myInput.property('value');
 const model_name = d3.select('#model-select').property('value');

 // send everything
 // and return a promise
 const server_query = d3.request;
 server_query
 .method: "POST"
 .body: JSON.stringify({
 sentence: input_sentence,
 model_name: model_name
 }),
 headers: {
 Content-Type: 'application/json'
 }
 .then(response => {
 currentModel = response.request.model_name;
 currentResults = response.results;

 // don't change selectedToken unless text is shorter
 selectedToken = Math.min(selectedToken, currentResults.tokens.length - 1);

 // update layer buttons, heads visualization, text visualization
 updateLayerBsns(currentResults.attention.length);
 updateHeadsVis();
 updateTextVis();
 });
}
const updateLayerBtns = (no_btns) => {
 // create/update as many buttons as there are layers
 d3.select('#layers').selectAll('.btn').data(d3.range(no_btns))
 .join('div')
 .attr('class', 'btn')
 // most left/right buttons have round corners
 .classed('btn_l', d => d === 0)
 .classed('btn_r', d => d === (no_btns - 1))
 .text(d => d)
 .on('click', d => {
 // if clicked... set selected layer and update all VIS
 selectedLayer = d;
 updateLayerSelection();
 updateHeadsVis();
 updateTextVis();
 })
}

updateLayerSelection();
const updateLayerSelection = () => {
 d3.select('#layers').selectAll('.btn')
 .classed('selected', d => d === selectedLayer);
}
Define a linear color scale variable

```javascript
const colorScale = d3.scaleLinear().domain([0, 10, 100])
  .range(['#fff', '#aaa', '#4d4d4d'])

function updateHeadsVis() {
  // select all attention head elements
  const headsDOM = d3.selectAll('#heads')
    .data()
    .join('div')
    .attr('class', 'attBox')
    // highlight the selected token
    .classed('selected', (d, i) => i === selectedToken)
    .style('background-color', d => colorScale(d))
}
```
Minimal Attention Vis

Select model: DistilBert
Enter a sentence: I dropped my pen in the mashed potatoes.

Results

Layers & Heads
Call for Reproducibility and Public Adoption: open source with documentation
exBERT visualization component

[placeholder]
Broader Perspective / Current Opportunities

[TODO: add reading list items in categories]
Broader Perspective / Current Opportunities

Opportunity: Mixed-Initiative Guidance
Towards better analysis of machine learning models: A visual analytics perspective.
[Liu et al. ’17]

Opportunity: Tighter integration of model + interface development
Placeholder
[Placeholder ’20]
Test Alternative Decisions or WHAT IF Mode

Allow reasonable and interpretable modifications of your model input and internals during inference mode to help with understanding and debugging.
Interactive Collaboration
Interactive Visualization Questionnaire

What is the goal of the tool?

Pedagogical / Debugging / Debiasing / …
Understanding model structure / model decisions / data / …
How do you quantify an outcome?

Who is your user?

ML or NLP Expert/ Domain Expert / Student / …
How much domain/ model knowledge do they have?

The answers will inform the following implementation questions:

Does the tool require interaction with the model? With the data?
Can you change the model structure or model decisions?
Outline

- Structural analyses
- Behavioral analyses
- Interactive visualizations
- Other methods
Other Topics

- **Adversarial examples**
 - Can point to model weaknesses
 - Challenges with text input (and output)
 - How to calculate gradients
 - How to measure similarity to real examples

- **Generating explanations**
 - Annotated explanations
 - Rationales: erasure-based, latent variables

- **Formal languages as models of language**
 - For example: can LSTMs learn context-free languages?
 - Long line of research starting in the 1980s
References and Resources

- Another upcoming tutorial (online):
Conclusion