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A Appendix
A.1 Experimental settings
A.1.1 Input space
The input space I is composed of 1000 one-hot vec-
tors. Each of them has to be communicated by Speaker
to Listener. In order to fit the distribution of words in
natural languages, the inputs are fed from a power-law
distribution. Indeed, as demonstrated in Figure 1, distri-
bution of words in natural languages follow power-laws
with exponents k between −0.79 (Arabic) and −0.96
(Russian). In our experiment, we choose k = −1.

Figure 1: Comparison between the input distribution
of our artificial environment and the distribution of the
1000 most frequent words in different natural languages
(the coefficient k refers to the coefficient of the power-
law for each language when fitted by a linear regres-
sion).

A.1.2 Agents
In all our experiments, we fix the architecture of the
agents. Speaker is a 1-layer LSTM (Hochreiter and
Schmidhuber, 1997) with a hidden size equal to 100.
Listener is also a 1-layer LSTM with a hidden size equal
to 600.

A.1.3 Optimization
For the training, we use the Adam optimizer (Kingma
and Ba, 2014) with a learning rate equal to 0.001. We

train the agents for 1500 epochs. During one episode,
the system is fed with 100 batches of 512 inputs sam-
pled with replacement from the power-law distribution.
In addition, we enforce exploration with an entropy reg-
ularization coefficient equal to 2 (Williams and Peng,
1991).

To ensure the robustness of our results, we ran the
experiments with 6 different random seeds. All the
experiments have been successful, i.e. they reach an
accuracy of 99%. This accuracy is weighted by the
frequency of inputs. On average, more than 97.5% of
inputs are well communicated.

A.1.4 Adaptive regularization coefficient
As defined in the main paper, the adaptive regularization
coefficient is scheduled as a function of the accuracy in
order to have the following two-step scheme:

• Exploration step: during the first part of the train-
ing (low accuracy), the regularization coefficient is
almost null

• Reduction step: Once the communication be-
comes successful (high accuracy), we start intro-
ducing a regularization.

A fair equation to model this two-step scheme is:

α(accuracy) =
accuracyβ1

β2
(1)

where (β1, β2) ∈ R2 is a new couple of hyper-
parameters. Intuitively, the two parameters allow to
control (a) the threshold from which the regularization
becomes effective (with β1) and (b) the intensity of the
regularization (with β2). In our experiments, we intro-
duce a late regularization choosing: β1 = 45. We set
β2 = 10 in order to enables the system to reach an ac-
curacy close to 1.
Note that other regularization scheduling can be applied.
The only requirement is that the agents successfully
communicate before the start of the reduction step.

A.2 Characterization of the emergent
communication with Standard Agents

In this section, we report complements about the charac-
terization of the emergent communication with Standard
Agents.



A.2.1 Quick use of long messages

Figure 2: Accuracy as a function of the mean length
for 4 different seeds. Each point represents a couple
(accuracy,mean length).

To bring more insights about the length inefficiency
observed in the main paper, we characterize each
episode by the couple accuracy (i.e. the proportion of in-
puts correctly communicated by the agents weighted
by the frequency of appearance) and mean length
(i.e. the average length of the messages generated by the
Speaker).

During the training time, we analyze how this couple
evolves. The results with four randomly selected seeds
are shown in Figure 2. As we can see, at the beginning
of the learning process (low accuracies), both the mean
length of the messages and the accuracy are quite low
(the lowest accuracy value 0.13 corresponds to the good
prediction of the most frequent input). Then, the mean
message length is increasing without a strong effect on
the accuracy. It is only when the agents start to use long
messages (higher than 25 for a maximum length of 30)
that the communication becomes successful. Therefore,
we see that exploration of long messages seems key for
the agents to reach high accuracies.

A.2.2 Efficient informative symbols

We analyze the statistical properties of the informative
parts of the messages that emerge from Standard Agents.
As defined in the main paper, we consider a symbol in-
formative if it is used by Listener for the reconstruction.
We remove all the non-informative symbols from the
messages (i.e. positions k with Λk,. = 0). In Figure
3, we plot the length of informative parts of messages
associated to inputs ranked by frequency (average dis-
tribution over the different runs). We compare it to the
average words length distribution of natural languages
and to Optimal Coding. As we can see in the figure, even
though Standard Agents produce an inefficient code (as
seen in the main paper) the length statistic of the infor-
mative parts is close to Optimal Coding. Interestingly,
we even note an emergent code more efficient than nat-
ural languages. In addition, even if no constraint is
applied on informative parts, we observe that it follows
ZLA.

Figure 3: Average length distribution of informative
parts in Standard Agents code compared to the mean
words distribution of natural languages and Optimal
Coding. The light blue interval shows 1 standard devia-
tion. For readability, the natural language distribution
have been smoothed with a sliding average of 3 consec-
utive lengths.

A.3 Comparing communication systems

A.3.1 Convergence
We check here the convergence and robustness of our
introduced communication system, LazImpa. As a pre-
liminary analysis, we compare the convergence results
of: Standard Agents, (Standard Speaker + Impatient
Listener), (Lazy Speaker + Standard Listener) and Laz-
Impa. In Figure 4, we show the accuracy as a function
of the training episodes for 3 randomly selected seeds.
We see that the convergence dynamic is sensitive to
the initialization but that in the end, the three systems
converge.

Moreover, we observe a gain of stability for the sys-
tems with the Impatient Listener. Indeed, as shown in
Figure 4, Standard Agents demonstrate a less smooth
accuracy curve compared to both (Standard Speaker +
Impatient Listener) and LazImpa. We quantify the sta-
bility by introducing a coefficient δstab that measures
the local variations of the accuracy curves. Formally,
we compute the mean square error between the origi-
nal accuracy curve and the smoothed curve obtained by
averaging 10 consecutive score values:

δstab =
1

n

n∑
i=1

(f(i)− f̃(i))2 (2)

where n is the total number of episodes, f(.) the ac-
curacy curve (as a function of the number of episode),
f̃(i) the curve obtained by averaging f(.) over with 11
consecutive episodes centered in i. The lower δstab is,
the smoother the system is .

Results are reported in Table 1. δstab for systems
with Impatient Listener are smaller than the one with
Standard Listener confirming the stability of the former.
It is important noticing that, contrary to (Chaabouni



(a) Seed 1 (b) Seed 2 (c) Seed 3

Figure 4: Evolution of the accuracy of the three systems for 3 randomly selected seeds.

Standard Lazy Speaker + Standard Speaker + LazImpa
Agents Standard Listener Impatient Listener

δstab 1.16± 0.78× 10−3 1.75± 0.60× 10−3 9.84± 5.81× 10−5 9.79± 7.35× 10−5

Table 1: Average MSE between the original and smoothed accuracy curve

et al., 2019)’s setting where they managed to have more
efficient languages at the cost of stable convergence, our
new communicative system, on top of leading to effi-
cient languages, has positive impact on the convergence.

A.3.2 Complement on randomization test
To be comparable with Ferrer i Cancho et al. (2013), we
perform the randomization test with 10−5 permutations.
In the reference article, for a threshold α they introduce
two types of p-values:

• Left p-value: if left p-value < α, the code is char-
acterized by Ltoken significantly smaller than the
average weighted message length of any random
permutation, corresponding to our notion of ZLA
code.

• Right p-value: if right p-value < α, the code is
characterized by Ltoken significantly higher than
the average weighted message length of any ran-
dom permutation, corresponding to our notion of
anti-ZLA code.

In the main text, we only report the value of the ZLA
significance score pZLA that is equivalent to Ferrer i
Cancho et al. (2013)’s left p-value. However, when also
considering right p-value (not shown here), we note for
Standard Agents a value smaller than 10−5 asserting
that the system shows a significantly anti-ZLA patterns.

A.4 Complements on LazImpa
A.4.1 minimal required length by Impatient

Listener
Thanks to the incremental predictive mechanism of Im-
patient Listener, it is possible to analyze its intermediate
guesses at each reading time. In particular, we are able
to spot at which position Impatient Listener is first able
to predict the correct output (we verify experimentally
that, if Listener finds the correct output at position i, it

Figure 5: Comparison between the length distribution
of the messages and the minimal required length for
Impatient Listener to discriminate the messages. The
blue curve shows average length distribution function
of the inputs frequency ranks. The orange curve repre-
sents the average minimal required length by Impatient
Listener to decode messages. The purple curve shows
the Optimal Coding with the original vocabulary size.
The red curve represents the Optimal Coding for the
effective vocabulary size Veff . Light intervals show 1
standard deviation.

always predicts the right output at position j > i). From
these intermediate predictions, we define a distribution
called ‘minimal required length’ of all the positions
at which Impatient Listener is able to first predict the
correct output (note that this distribution matches the
distribution of the number of informative symbols by
message).

We observe that Impatient Listener was often able to
find the correct candidate before reading the EOS token.
The resulting minimal length is presented in Figure 5
where we show the length distribution of the messages
ranked by input frequency and the actual length required



by the Impatient Listener to discriminate the messages.
We see that the minimal required length by the Impatient
Listener is slightly higher than the Optimal Coding.
Interestingly, the difference can be partially explained
by the use of a skewed distribution of the unigrams
across the messages (the Optimal Coding relies on a
uniform use of the symbols). Indeed, we compute an
effective vocabulary size Veff , solution of Equation 3:

−
Veff∑
i=1

1

Veff
log

(
1

Veff

)
= H(U), (3)

where Veff is the effective vocabulary size, andH(U)
the entropy of the unigram distribution U in the emer-
gent communication.

In other words, we search for Veff for which the
entropy of a uniform unigram distribution (the left side
of Equation 3) is equal to emergent languages average
unigram distribution (the right side of Equation 3).

We plot in Figure 5 a new Optimal Coding with Veff
(Optimal Coding with Veff ). The distribution ‘minimal
required length’ almost fits the Optimal Coding with
this vocabulary size. As shown in Table 2, the average
mean length Ltype of minimal required length is almost
equal to Ltype of Optimal Coding with Veff .

A.4.2 LazImpa robustness to parameters
assumptions

In this section, we analyze LazImpa robustness to pa-
rameters changes. In the main paper, we made two main
assumptions:

1. Samples are drawn according to a powerlaw;

2. voc_size = 40 and max_len = 30.

In the main paper, we demonstrated that LazImpa
is able to reach efficient performances with this set of
assumptions. We now want to test whether the system
is robust to changes of these parameters, i.e. is LazImpa
able to produce efficient and successful codes when in-
puts are drawn uniformly and/or for different values of
voc_size ? We report the results of all our experi-
ments in Table 3. Curves associated to experiments with
variations of vocabulary size are shown in Figure 6. All
these results have been obtained by averaging the results
over 3 different seeds by each set of parameters.

Effect of voc size :
As we can observe in Figure 6, emergent codes still

respects ZLA for the various tested values of vocabulary
size. This is confirmed by the ZLA significance score
pZLA stored in Table 3a. Additionally, we can see a
correlation between the size of the vocabulary and the
efficiency of the emergent code: the emergent code is
more efficient for large sizes of vocabulary. Indeed,
we observe that Ltype, Ltoken and Leff are increasing
functions of the vocabulary size. This is expected as the
number of messages of a given length increases with
the vocabulary size. Thus, the set of ‘short’ messages is

Figure 6: Comparison of LazImpa’s average message
length for different vocabulary sizes.

higher for a large vocabulary size. Naturally, the same
trend is observed with Optimal Coding. Moreover, we
note a decrease of ρinf as a function of voc_size
for the LazImpa system, suggesting that the smaller the
vocabulary size is the more noninformative positions
are used.

Effect of max len: We can note in Table 3b that
LazImpa is even closer to Optimal Coding when setting
max len = 20. Ltype, Ltoken and Leff are slightly
smaller compared to experiments with max len = 30.
Thus, agents regularization seems to be easier when
setting smaller values of max len. Nevertheless, the
results are very close. In particular, we can note that
information density values ρinf are very similar sug-
gesting that sub-optimality issues are independent of
the parameter max len. Note that we only explore
two values of max len in Table 3b because small and
large values of max len lead respectively to a small
and large message space and thus optimization issues
(H-parameters tuning is required to favor respectively
exploration and exploitation).

Effect of input distribution: As we observe in Table
3c, LazImpa’s performances are quite similar when deal-
ing with inputs drawn from a uniform or a powerlaw
distribution. In particular, with a uniform distribution,
we observe a gain of efficiency for Ltype and a loss of
efficiency for Ltoken while Leff is almost unchanged.
All these results are expected. Equal Leff means that
Impatient Listener relies on the same number of sym-
bols on average. In the main paper, we have shown that
Leff is mostly influenced by the entropy of the unigram
distribution. Since, there is no change of voc size,
we do not expect major changes of entropy and thus no
change for Leff . Then, the difference of Ltoken and
Ltype is explained by the reduction step. For uniformly
drawn inputs, the regularization is uniformly applied on
the inputs ; for inputs drawn from a powerlaw, the reg-
ularization mostly focuses on the most frequent inputs
because they have larger weights in the loss. Conse-



Minimal required length Opt. coding with V Opt. coding with Veff
Ltype 2.74± 0.08 1.69 2.50

Table 2: Comparison of the average length Ltype of different encoding. ‘Opt. coding with V’ to the Optimal Coding
obtained with vocabulary V, ‘Opt. coding with Veff ’ to the Optimal Coding obtained with vocabulary Veff . We
also report standard deviation over all the experiments.

quently, we expect a lower Ltoken when experimenting
with a powerlaw distribution, compared to the uniform
setting, but a larger Ltype. Eventually, we observe a sig-
nificant gain of information density ρinf for LazImpa
with a uniform distribution. This is mainly explained
by ρinf computation that takes into account message
lengths without involving their frequency.

As a remark, let’s precise that we do not explore a
larger set of non-uniform input distributions. In the-
ory, the shape of the length distribution should not be
impacted by the input distribution because the optimiza-
tion problem is only dependent of the frequency ranks
(mapping of the shortest messages to the most frequent
inputs).

A.4.3 Statistical comparison between LazImpa
and natural languages

Figure 7 shows the words length as a function of their
frequency for both natural languages and the emergent
language. This figure completes our comparison made
in the main paper between LazImpa and natural lan-
guages where curves were smoothed. Here we show
the raw natural languages distribution. The additional
observation that we can make is that the variance of the
words length is larger for the natural languages.
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voc_size System Ltype Ltoken pZLA Leff ρinf

40 LazImpa 5.49± 0.67 3.78± 0.34 < 10−5* 2.67± 0.07 0.60± 0.07
Optimal Coding 2.96 2.29 < 10−5* 1.96 1

30 LazImpa 6.49± 1.20 4.14± 0.43 < 10−5* 2.71± 0.22 0.53± 0.07
Optimal Coding 3.09 2.35 < 10−5* 2.09 1.

20 LazImpa 7.91± 0.71 4.80± 0.30 < 10−5* 2.98± 0.07 0.45± 0.04
Optimal Coding 3.59 2.51 < 10−5* 2.59 1.

10 LazImpa 10.82± 0.28 6.54± 0.06 < 10−5* 3.87± 0.10 0.40± 0.005
Optimal Coding 4.08 2.82 < 10−5* 3.08 1.

(a) Variations of vocabulary size voc size. By default, the input distribution is a powerlaw and max len = 30.

max len System Ltype Ltoken pZLA Leff ρinf

30 LazImpa 5.49± 0.67 3.78± 0.34 < 10−5* 2.67± 0.07 0.60± 0.07
Optimal Coding 2.96 2.29 < 10−5* 1.96 1

20 LazImpa 4.36± 0.11 3.12± 0.06 < 10−5* 2.40± 0.08 0.55± 0.01
Optimal Coding 2.96 2.29 < 10−5* 1.96 1

(b) Variations of maximum length max len. By default, the input distribution is a powerlaw and voc size = 40.

Distribution System Ltype Ltoken pZLA Leff ρinf

powerlaw LazImpa 5.49± 0.67 3.78± 0.34 < 10−5* 2.67± 0.07 0.60± 0.07
Optimal Coding 2.96 2.29 < 10−5* 1.96 1

uniform LazImpa 4.27± 0.37 4.27± 0.37 / 2.53± 0.09 0.81± 0.08
Optimal Coding 2.96 2.96 / 1.96 1

(c) Variations of input distribution. By default: voc size = 40, max len = 30.

Table 3: Efficiency analysis of LazImpa and Optimal Coding for different set of parameters. Ltype is the mean
message length, Ltoken is the mean weighted message length, pZLA the ZLA significance score, Leff the effective
length and ρinf the information density. ‘/’ indicates that the metric is not relevant. For pZLA, ‘*’ indicates that the
p-value is significant (< 0.001).

Figure 7: Comparison of the message length as a function of input frequency rank for LazImpa and natural
languages.


