
Appendix A Preliminary Experiments

A.A Skip Connection

Skip connections of composition model help address the vanishing gradient problem, and following
experiments show that they are necessary to integrate pre-trained BERT (Devlin et al., 2018) parameters
with the model:

Model UAS LAS
BERT StateTr 94.78 92.06
BERT StateTr without skip 93.16 90.51

Table 1: Preliminary experiments on the development set of WSJ Penn Treebank for BERT StateTr model
with/without skip connections.

A.B Position Embeddings

Following experiments show that using position embeddings for the whole sequence achieves better
performance than applying separate position embeddings for each segment:

Model UAS LAS
BERT StateTr 94.78 92.06
BERT StateTr with separate pos 93.10 90.39

Table 2: Preliminary experiments on the development set of WSJ Penn Treebank for BERT StateTr model, and its
variation with separate position embeddings for each section.

Appendix B Composition Model

Previous work has shown that recursive neural networks are capable of inducing a representation for
complex phrases by recursively embedding sub-phrases (Socher et al., 2011, 2014, 2013; Hermann and
Blunsom, 2013). Dyer et al. (2015) showed that this is an effective technique for embedding the partial
parse subtrees specified by the parse history in transition-based dependency parsing. Since a word in
a dependency tree can have a variable number of dependents, they combined the dependency relations
incrementally as they are specified by the parser.

We extend this idea by using a feed-forward neural network with Tanh as the activation function and skip
connections. For every token in position i on the stack or buffer, after deciding on step t, the composition
model computes a vectorCt+1

a,i which is added to the input embedding for that token:
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where the Comp function is a one-layer feed forward neural network, and (ψt
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most recent dependency relation with head ψt
a,i specified by the decision at step t for element in position

i in the stack or buffer. In arc-standard parsing, the only word which might have received a new dependent
by the previous decision is the word on the top of the stack, i=1. This gives us the following definition
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whereCt
S,1 andCt

S,2 are the embeddings of the top two elements of the stack at time step t, andCt
B,1 is the

embedding of the word on the front of the buffer at time t. lta,i∈Rm is the label embedding of the specified
relation, including its direction. For all words which have not received a new dependent, the composition
is computed anyway with the most recent dependent and label (with a [NULL] dependent and label of
that position[L-NULL] if there is no dependency relation with element i as the head).13

At t=0,Ct
a,i is set to the initial token embedding Twi . The model then computes Equation 11 iteratively

at each step t for each token on the stack or buffer.
There is a skip connection in Equation 11 to address the vanishing gradient problem. Also, preliminary

experiments showed that without this skip connection to bias the composition model towards the initial token
embeddingsTwi , integrating pre-trained BERT (Devlin et al., 2018) parameters into the model did not work.

13Preliminary experiments indicated that not updating the composition embedding for these cases resulted in worse performance.



Appendix C Example of the Graph-to-Graph Transformer parsing
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(a) SentTr+G2G-Tr.
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(b) StateTr+G2G-Tr.

Figure 4: Example of Graph-to-Graph Transformer model integrated with SentTr and StateTr on UD English
Treebank (initial sentence: ”Hey There .”).

Appendix D Description of Treebanks

D.A English Penn Treebank Description

The dataset can be found here under LDC licence. Stanford PoS tagger and constituency converter can be
downloaded from here and here, respectively. Here is the detailed information of English Penn Treebank:

https://catalog.ldc.upenn.edu/LDC99T42
https://nlp.stanford.edu/software/tagger.shtml
https://nlp.stanford.edu/software/corenlp-backup-download.html


Language Version Non-projectivity ratio Train size(2-21) Development size(22,24) Test size(23)
English 3 0.1% 39’832 3’046 2’416

Table 3: Description of English Penn Treebank.

D.B UD Treebanks Description

UD Treebanks v2.3 are provided in here. Pre-processing tools can be found here.

Language Family Treebank Order Train size Development size Test size Non-projectivity ratio
Arabic non-IE PADT VSO 6.1K 0.9K 0.68K 9.2%
Basque non-IE BDT SOV 5.4K 1.8K 1.8K 33.5%
Chinese non-IE GSD SVO 4K 0.5K 0.5K 0.6%
English IE EWT SVO 12.5K 2k 2.1K 5.3%
Finnish non-IE TDT SVO 12.2K 1.3K 1.5K 6.2%
Hebrew non-IE HTB SVO 5.2K 0.48K 0.49K 7.6%
Hindi IE HDTB SOV 13.3K 1.7K 1.7K 13.8%
Italian IE ISDT SVO 13.1K 0.56K 0.48K 1.9%

Japanese non-IE GSD SOV 7.1K 0.51K 0.55K 2.7%
Korean non-IE GSD SOV 4.4K 0.95K 0.99K 16.2%
Russian IE SynTagRus SVO 48.8K 6.5K 6.5K 8.0%
Swedish IE Talbanken SVO 4.3K 0.5K 1.2K 3.3%
Turkish non-IE IMST SOV 3.7K 0.97K 0.97K 11.1%

Table 4: Description of languages chosen from UD Treebanks v2.3.

Appendix E Running Details of Proposed Models

We provide the number of parameters and average run times for each model. For a better understanding,
average run time is computed per transition (Second/transition). All experiments are computed with
graphics processing unit (GPU), specifically the NVIDIA V100 model. The total number of transitions
in the train and development sets are 79664 and 6092, respectively.

Model No. parameters Train (sec/transition) Evaluation (sec/transition) Evaluation (sent/sec) Evaluation (token/sec)
StateTr 90.33M 0.098 0.031 16.2 388.13
StateTr+G2GTr 105.78M 0.226 0.071 7.05 168.91
SentTr 63.23M 0.112 0.026 19.27 460.6
SentTr+G2GTr 63.27M 0.138 0.031 16.2 388.13

Table 5: Running details of our models on WSJ Penn Treebank.

Appendix F Hyper-parameters for our parsing models

For hyper-parameter selection, we use manual tuning to find the best numbers. For BERT (Devlin et al.,
2018) hyper-parameters, we apply the same optimization strategy as suggested by Wolf et al. (2019). For
classifiers and composition model, we use a one-layer feed-forward neural network for simplicity. Then,
we pick hyper-parameters based on previous works (Devlin et al., 2018; Dyer et al., 2015). We use two
separate optimisers for pre-trained parameters (BERT here) and randomly initialised parameters for better
convergence that is shown to be useful in Kondratyuk and Straka (2019). Early stopping (based on LAS)
is used during training. The only tuning strategy that has been tried is to use one optimiser for all parameters
or two different optimisers for pre-trained parameters and randomly initialised ones. For the latter case,
Learning rate for randomly initialised parameters is set to 1e−4. Results of different variations on the
development set of WSJ Penn Treebank are as follows:

https://universaldependencies.org/
https://universaldependencies.org/tools.html


Model UAS LAS
BERT StateTr with one optimiser 94.66 91.94
BERT StateTr with two optimisers 94.24 91.67
Expected (Average) Performance 94.45 91.81
BERT StateTr+G2GTr with one optimiser 94.96 92.88
BERT StateTr+G2GTr with two optimisers 94.75 92.49
Expected (Average) Performance 94.86 92.69
BERT SentTr with one optimiser 95.34 93.29
BERT SentTr with two optimisers 95.49 93.29
Expected (Average) Performance 95.42 93.29
BERT SentTr+G2GTr with one optimiser 95.27 93.18
BERT SentTr+G2GTr with two optimisers 95.66 93.60
Expected (Average) Performance 95.47 93.40

Table 6: Results on the development set of WSJ Penn Treebank for different optimisation strategy.

Hyper-parameters for training our models are defined as 14:

Component Specification
Optimiser BertAdam

Learning Rate 1e-5
Base Learning Rate 1e-4
Adam Betas(b1,b2) (0.9,0.999)

Adam Epsilon 1e-6
Weight Decay 0.01

Max-Grad-Norm 1
Warm-up 0.01

Self-Attention
No. Layers(n) 6

No. Heads 12
Embedding size 768

Max Position Embedding 512
BERT model bert-base-uncased
Classifiers
No. Layers 2

Hidden size(Exist) 500
Hidden size(Relation) 100

Drop-out 0.05
Activation ReLU

History Model LSTM
No. Layers 2
Hidden Size 768

Composition Model
No. Layers 2
Hidden size 768

Epochs 12

Table 7: Hyper-parameters for training our models.

14For UD Treebanks, we train our model for 20 epochs, and use ”bert-multilingual-cased” for the initialisation. We use
pre-trained BERT models of https://github.com/google-research/bert.

https://github.com/google-research/bert


Appendix G Pseudo-Code of Graph Input Mechanism

Algorithm 1 Pseudo-code of building graph
input matrix for StateTr+G2GTr model.

1: Graph Sentence(input of attention): P
2: Graph Input: G
3: Actions: A=(a1,...,aT )
4: Input: (S,B,D)
5: for k←1,T do
6: if ak = SHIFT or SWAP then
7: continue
8: else
9: new relation:i l−→j

10: Gi,j =1
11: Gj,i=2
12: pop xj from stack
13: change mask of xj to one
14: add l to input embedding of xj
15: P :selectG based on Input (S,B,D)
16: end if
17: end for

Algorithm 2 Pseudo-code of building graph
input matrix for SentTr+G2GTr model.

1: Graph Sentence(input of attention): P
2: Graph Input: G
3: Actions: A=(a1,...,aT )
4: Input: initial tokens
5: for k←1,T do
6: if ak = SHIFT or SWAP then
7: continue
8: else
9: new relation:i l−→j

10: Gi,j =1
11: Gj,i=2
12: add l to input embedding of j-th word
13: P =G
14: end if
15: end for

Appendix H UD Treebanks Results

BERT SentTr+G2GTr results:

Language Test set-UAS Dev set-UAS Dev set-LAS
Arabic 87.65 87.01 82.64
Basque 87.17 86.53 83.25
Chinese 89.74 88.36 85.79
English 92.05 93.05 91.3
Finnish 91.46 91.37 89.72
Hebrew 90.85 91.92 89.55
Hindi 95.77 95.86 93.17
Italian 95.15 95.22 93.9
Japanese 96.21 96.68 96.04
Korean 89.42 87.57 84.94
Russian 94.42 94.0 92.70
Swedish 92.49 87.26 85.39
Turkish 74.23 72.52 66.05
Average 90.51 89.80 87.27

Table 8: Dependency scores of BERT SentTr+G2GTr model on the development and test sets of UD Treebanks.

BERT StateTr+G2GTr results:

Language Test set-UAS Dev set-UAS Dev set-LAS
Arabic 86.85 86.41 81.73
Basque 80.91 80.01 73.2
Chinese 87.90 86.64 84.15
English 90.91 91.85 90.11
Finnish 84.35 82.91 78.73
Hebrew 89.51 90.36 87.85
Hindi 95.65 95.92 93.30
Italian 93.5 93.61 92.18
Japanese 95.99 96.18 95.58
Korean 84.35 82.13 77.78
Russian 93.87 93.41 92.09
Swedish 92.49 90.72 88.36
Turkish 65.99 65.92 56.96
Average 87.87 87.39 84.01

Table 9: Dependency scores of BERT StateTr+G2GTr model on the development and test sets of UD Treebanks.



Appendix I Error-Analysis

I.A Dependency Length

Model ROOT 1 2 3 4 5 6 7 8 9 >=10
BERT StateTr 96.40 94.30 93.15 91.00 87.80 85.19 82.80 81.25 80.49 82.54 84.82

BERT StateCLSTr 95.80 93.75 92.25 89.60 86.45 82.77 80.58 79.62 79.98 78.90 81.74
BERT StateTr+G2GTr 97.10 94.45 93.60 92.20 89.80 87.54 86.00 84.60 84.45 85.55 86.86

BERT StateTr+G2CLSTr 96.50 94.10 93.00 91.45 88.65 85.74 84.25 82.55 81.80 82.25 85.50
BERT StateTr+G2GTr+C 96.95 94.25 93.25 91.30 88.30 85.74 83.50 82.75 83.10 83.95 86.15

Table 10: labelled F-Score vs dependency relation length

Model ROOT 1 2 3 4 5 6 7 8 9 >=10
BERT StateTr 3046 31245 14478 7565 4153 2461 1681 1185 933 808 5415

BERT StateCLSTr 3046 31409 14473 7553 4131 2406 1641 1153 923 832 5403
BERT StateTr+G2GTr 3047 31240 14457 7572 4171 2465 1688 1188 941 811 5390

BERT StateTr+G2CLSTr 3046 31249 14447 7537 4143 2453 1701 1193 953 814 5434
BERT StateTr+G2GTr+C 3047 31304 14430 7514 4137 2449 1693 1182 951 830 5433

Gold bins 3046 31126 14490 7551 4155 2508 1698 1195 953 821 5427

Table 11: Size of each bin based on dependency length

I.B Distance to Root

Model ROOT 1 2 3 4 5 6 7 8 9 >=10
BERT StateTr 96.40 91.35 91.00 91.45 91.80 91.50 92.10 91.75 91.90 90.06 93.06

BERT StateCLSTr 95.80 90.55 90.20 90.25 90.70 90.65 91.10 89.95 89.20 88.24 87.69
BERT StateTr+G2GTr 97.10 92.70 92.10 92.40 92.05 92.05 92.55 91.99 92.39 90.49 94.54

BERT StateTr+G2CLSTr 96.50 91.60 91.30 91.55 91.65 91.55 92.10 91.90 91.10 89.93 93.48
BERT StateTr+G2GTr+C 96.95 92.10 91.45 91.55 91.70 91.45 92.35 91.75 92.59 89.50 91.77

Table 12: labelled F-Score vs distance to root

Model ROOT 1 2 3 4 5 6 7 8 9 >=10
BERT StateTr 3046 16081 15965 12999 9301 6488 3964 2242 1343 740 801

BERT StateCLSTr 3046 15963 15798 12793 9222 6419 3974 2331 1358 827 1239
BERT StateTr+G2GTr 3047 16024 15889 12875 9415 6463 3995 2349 1347 743 823

BERT StateTr+G2CLSTr 3046 16064 15975 12971 9327 6488 3963 2279 1316 708 833
BERT StateTr+G2GTr+C 3047 16079 15947 13020 9419 6481 3930 2259 1274 701 813

Gold bins 3046 16002 16142 13064 9403 6411 3923 2298 1298 702 681

Table 13: Size of each bin based on distance to root

I.C Sentence Length

Model 1-9 10-19 20-29 30-39 40-49 >= 50
BERT StateTr 96.1 95.6 95.0 94.4 93.9 90.2

BERT StateCLSTr 94.6 95.0 94.4 93.9 93.0 80.2
BERT StateTr+G2GTr 95.1 95.9 95.3 94.6 94.4 91.2

BERT StateTr+G2CLSTr 94.7 95.1 94.8 94.2 93.2 89.4
BERT StateTr+G2GTr+C 94.7 95.3 95.1 94.5 93.4 86.7

Table 14: LAS vs. sentence length



I.D Dependency Type Analysis

Type StateTr+G2GTr StateTr StateTr+G2CLSTr
acomp 68.62 58.60 (-31.9%) 66.04 (-8.2%)
advcl 82.75 70.68 (-70.0%) 81.85 (-5.2%)
advmod 83.85 84.40 (3.4%) 84.35 (3.1%)
amod 92.55 92.25 (-4.1%) 92.30 (-3.4%)
appos 87.85 84.94 (-23.9%) 83.25 (-37.8%)
aux 98.55 98.35 (-13.8%) 98.45 (-6.9%)

auxpass 96.65 96.04 (-18.0%) 95.84 (-24.0%)
cc 90.90 90.45 (-4.9%) 88.80 (-23.1%)

ccomp 89.49 81.82 (-73.0%) 87.56 (-18.4%)
conj 86.45 84.70 (-12.9%) 84.15 (-17.0%)
cop 93.08 92.62 (-6.5%) 91.58 (-21.7%)
csubj 76.94 67.93 (-39.0%) 70.83 (-26.5%)
dep 54.66 50.88 (-8.3%) 51.99 (-5.9%)
det 98.25 98.30 (2.9%) 98.00 (-14.3%)

discourse 15.40 15.40 (-0.0%) 28.60 (15.6%)
dobj 94.85 94.10 (-14.6%) 93.95 (-17.5%)
expl 96.39 94.99 (-38.8%) 96.39 (-0.0%)

infmod 87.38 79.19 (-64.9%) 84.93 (-19.4%)
iobj 88.01 90.66 (22.1%) 84.24 (-31.4%)
mark 95.04 95.19 (2.9%) 94.84 (-4.1%)
mwe 86.46 89.71 (24.0%) 88.36 (14.1%)
neg 95.75 94.84 (-21.4%) 93.78 (-46.2%)
nn 94.25 94.10 (-2.6%) 93.65 (-10.5%)

npadvmod 91.89 92.75 (10.5%) 90.64 (-15.5%)
nsubj 96.35 95.55 (-21.9%) 95.60 (-20.6%)

nsubjpass 95.49 92.70 (-61.9%) 94.08 (-31.1%)
num 95.25 94.89 (-7.4%) 95.15 (-2.0%)

number 92.50 90.65 (-24.6%) 92.10 (-5.3%)
parataxis 69.59 62.89 (-22.1%) 72.10 (8.2%)
partmod 82.11 72.82 (-52.0%) 79.74 (-13.3%)
pcomp 88.12 86.49 (-13.7%) 85.77 (-19.8%)
pobj 97.15 96.95 (-7.0%) 96.60 (-19.3%)
poss 97.60 97.15 (-18.7%) 97.70 (4.2%)

possessive 98.29 98.04 (-14.5%) 98.44 (8.9%)
preconj 85.71 84.65 (-7.5%) 84.65 (-7.5%)
predet 79.34 79.34 (-0.0%) 77.44 (-9.2%)
prep 90.25 89.90 (-3.6%) 89.50 (-7.7%)
prt 84.48 83.42 (-6.9%) 83.10 (-8.9%)
punct 88.45 88.05 (-3.5%) 87.65 (-6.9%)

quantmod 86.97 84.40 (-19.7%) 84.49 (-19.0%)
rcmod 86.84 76.38 (-79.5%) 83.91 (-22.3%)
root 97.15 96.40 (-26.3%) 96.50 (-22.8%)
tmod 86.02 86.38 (2.6%) 85.03 (-7.1%)
xcomp 90.75 84.44 (-68.2%) 89.75 (-10.8%)

Table 15: F-score of StateTr, StateTr+G2GTr, and StateTr+G2CLSTr models for the dependency types on the
development set of WSJ Treebank. Relative error reduction is computed by considering StateTr+G2GTr scores as
the reference.


