
A Recurrent neural network baselines

The recurrent neural network baselines consists of
two bidirectional GRU recurrent neural networks
(Cho et al., 2014), each with a hidden size of 256,
where one is used for obtaining a contextual embed-
dings of the text and the other for the clip-arts. Prior
to the RNN, the clip-arts are ordered according to
the HO, and an embedding of size 256 is obtained
for every clip-art and word in the sentences. In
both models, an attention module attends on ev-
ery sentence word with respect to every clip-art in
a sequential manner when generating the spatial
arrangements of that clip-art. The ATTN+RNN
baseline, uses an extra GRU recurrent neural net-
work for propagating contextual information of the
generated spatial arrangements. The hidden size of
the attention module is kept the same as in the GRU
recurrent neural network – 256. Both models are
trained for 300 epochs with a fixed learning rate of
2e� 5, while the model with the best performance
on the validation set is used for inference on the
test set. There are no other forms of regulariza-
tion. As in SR-BERT, we implement two variants
of the ATTN and ATTN+RNN models, namely a
continuous and a discrete version.

B Data augmentation

Due to the limited data we have at hand, we are em-
ploying several data augmentation strategies to arti-
ficially increase the quantity of data, while preserv-
ing the meaning contained within a single scene.
Furthermore, we want to impose a greater impor-
tance on the relative positioning of the elements,
as well as obtain a model which is scene mirroring
invariant and invariant of the order of the language
spatial relationships. To this end, the data augmen-
tations we use are:

• In the dataset we use, each scene is paired
with a set of ⇠ 6 sentences, where each sen-
tence is entirely self-contained (“The cat is
on the bench”), which implies that the order
of the sentences does not matter. Therefore,
we randomly shuffle the sentences before con-
catenating and tokenizing them.

• For each valid scene in the dataset, the mir-
rored scene according to the y axis is also a
valid scene. Therefore, we randomly mirror
each scene with 50% probability by reverting
the x coordinates - |width� x|, and reverting
the orientation - |1� o| of each object.

• With 50% probability we move all elements in
the scene up, down, left or right, by a random
number of quantization intervals, with 25%
probability for each movement. The number
of quantization intervals is sampled uniformly
from [0,maxx)] for x and [0,maxy] for y.

C Experimental setup

The backbone of all our models is the BERTBASE

variant from Devlin et al. (2018), pre-trained on
the BooksCorpus (Zhu et al., 2015) and English
Wikipedia. We train all SR-BERT models us-
ing MPM as a training objective for 300 epochs,
while we train the clip-arts predictor model for 50
epochs. We use is Adam (Kingma and Ba, 2014)
with a learning rate of 2e� 5 for training the SR-
BERT models, and AdamW (Loshchilov and Hutter,
2017) with a learning rate of 5e� 5 and weight de-
cay of 1e� 2 for the clip-art predictor model since
it sped up convergence significantly. For all SR-
BERT models, we empirically set the scaling factor
� to 1

3 to obtain the average of the three spatial
embeddings. Apart from applying early stopping,
i.e., saving the model with the best performance on
the validation set, we do not tune our hyperparame-
ters. For the data augmentation maxx is equal to
25, and maxy to 20, since we use a fixed quanti-
zation interval of 20 on a scene size of 500⇥ 400.
We use a separate decoding strategy during model
selection on the validation set, so that we can make
an unbiased estimate about the performance of the
aforementioned decoding strategies. Namely, when
performing inference on the validation set, we gen-
erate the spatial arrangement of each scene element
by conditioning it on the ground truth spatial posi-
tions of all other scene elements in addition to the
sentences. The deep learning library of choice is
PyTorch (Paszke et al., 2019) alongside the Hug-
gingFace Transformers package (Wolf et al., 2019).



D Additional quantitative evaluation

From the full dataset, we randomly sample 1002
scenes for testing, 1002 scenes for model selection
and we use the remaining 7989 scenes for training
the models. We report the results in Table 5. In
addition, we include result of three naive baselines:
(i) Random - we generate a set of random [x, y]
coordinates by uniformly sampling from [0, 500]
for x and [0, 400] for y. (ii) Center - we place every
object in the scene center [250, 200]. (iii) Train-set
average - for each object category we compute the
average across the x and y axes on the training set.
Then, during inference, we impute those values as
the predicted positions.

Additionally, we train a new discrete SR-BERT
model on the dataset splits provided by Tan et al.
(2018) and we report the absolute and relative po-
sition similarities on the test set. We follow the
original evaluation methodology, i.e., we compute
the similarity for both the original ground truth
positions and the ground truth positions mirrored
across the y axis, and subsequently take the maxi-
mum as the absolute similarity for that scene.

We also investigate the effect of the model
size by performing inference with BERTMEDIUM,
BERTSMALL and BERTMINI provided by Turc et al.
(2019). Namely, for each of the three model sizes,
we train a discrete and a continuous model and per-
form inference with HC and HO decoding on the
full test set and report the results in Table 7.

Finally, we investigate how the masking percent-
age, initially fixed to 15% for all models in the
main paper, affects the models’ performance. We
report results in Table 8 with continuous and dis-
crete model based on BERTBASE by increasing the
masking percentage during training to 30%.10

E Additional qualitative evaluation

We select 10 random samples from the test and
generate the spatial arrangements given the lan-
guage using our two best models – discrete with
HC decoding and continuous with HO decoding.
We report the results in Figure 8.

10Since the discrete model trained with a masking percent-
age of 30% and the discrete model of Medium size differ
not-significantly from the best discrete model in the main
paper, we make all experiments in the main paper with the
BERTBASE discrete model trained with a masking percentage
of 15%.

F Additional information about the user
study

We conduct the user study on Amazon Mechan-
ical Turk where for each assignment (generated
scene) there are 3 distinct participants voting for
the spatial correctness of the sentences. One such
assignment can be seen on Figure 7. We collect
the results from the user study such that in case
a sentence has been selected as True by at least
two participants, we deem that sentence as True

for the scene, and False otherwise. Then, for each
scene we compute the average number of accepted
spatial arrangements as the fraction of accepted
sentences for that scene. Finally, we obtain the
macro-average over the whole subset of scenes.

Figure 7: Sample task from the user study we conduct
on Amazon Mechanical Turk.



Discrete Continuous

Method Abs. sim. Rel. sim. Abs. sim. Rel. sim.

SS 0.566 ± 0.002 0.756 ± 0.003 0.563 ± 0.002 0.786 ± 0.002
SS; no-lang 0.439 ± 0.002 0.623 ± 0.003 0.526 ± 0.002 0.767 ± 0.002

RO 0.591 ± 0.003 0.813 ± 0.003 0.576 ± 0.003 0.814 ± 0.003
RO; no-lang 0.496 ± 0.002 0.706 ± 0.003 0.526 ± 0.003 0.790 ± 0.002

HO 0.597 ± 0.003 0.821 ± 0.003 0.589 ± 0.003 0.816 ± 0.003
HO; no-lang 0.495 ± 0.002 0.703 ± 0.003 0.555 ± 0.002 0.792 ± 0.002

HC 0.605 ± 0.003 0.825 ± 0.003 — —
HC; no-lang 0.501 ± 0.002 0.709 ± 0.003 — —

LE 0.601 ± 0.003 0.826 ± 0.003 — —
LE; no-lang 0.499 ± 0.002 0.711 ± 0.003 — —

ATTN 0.572 ± 0.002 0.747 ± 0.003 0.579 ± 0.002 0.809 ± 0.002
ATTN+RNN 0.575 ± 0.003 0.751 ± 0.003 0.578 ± 0.002 0.810 ± 0.003

Random 0.384 ± 0.002 0.666 ± 0.002 0.384 ± 0.002 0.666 ± 0.002
Center 0.456 ± 0.002 0.412 ± 0.002 0.456 ± 0.002 0.412 ± 0.002

Train-set average 0.535 ± 0.002 0.687 ± 0.003 0.535 ± 0.002 0.687 ± 0.003

Table 5: Abs. sim. and rel. sim. on the full test set when the dataset split is done randomly.

Discrete

Method Abs. sim. Rel. sim.

SS 0.580 ± 0.002 0.777 ± 0.003
SS; no-lang 0.485 ± 0.002 0.666 ± 0.003

RO 0.607 ± 0.003 0.824 ± 0.003
RO; no-lang 0.526 ± 0.003 0.720 ± 0.003

HO 0.608 ± 0.003 0.826 ± 0.003
HO; no-lang 0.531 ± 0.003 0.715 ± 0.003

HC 0.616 ± 0.003 0.835 ± 0.003
HC; no-lang 0.532 ± 0.003 0.724 ± 0.003

LE 0.608 ± 0.003 0.829 ± 0.003
LE; no-lang 0.529 ± 0.003 0.718 ± 0.003

Table 6: Abs. sim. and rel. sim. on the test set provided by Tan et al. (2018).

Discrete Continuous

Method Abs. sim. Rel. sim. Abs. sim. Rel. sim.

BERTBASE; HC 0.598 ± 0.003 0.826 ± 0.003 — —
BERTBASE; HO 0.594 ± 0.003 0.826 ± 0.003 0.611 ± 0.003 0.846 ± 0.003

BERTMEDIUM; HC 0.614 ± 0.003 0.829 ± 0.003 — —
BERTMEDIUM; HO 0.608 ± 0.003 0.824 ± 0.003 0.583 ± 0.003 0.824 ± 0.003

BERTSMALL; HC 0.596 ± 0.003 0.808 ± 0.003 — —
BERTSMALL; HO 0.590 ± 0.003 0.804 ± 0.003 0.571 ± 0.002 0.808 ± 0.002

BERTMINI; HC 0.593 ± 0.003 0.794 ± 0.003 — —
BERTMINI; HO 0.587 ± 0.003 0.79 ± 0.003 0.565 ± 0.002 0.787 ± 0.002

Table 7: Abs. sim. and rel. sim. on the full test set obtained with smaller BERT variants.



Discrete Continuous

Method Abs. sim. Rel. sim. Abs. sim. Rel. sim.

15%; HC 0.598 ± 0.003 0.826 ± 0.003 — —
15%; HO 0.594 ± 0.003 0.823 ± 0.003 0.611 ± 0.003 0.846 ± 0.003

30%; HC 0.608 ± 0.003 0.829 ± 0.003 — —
30%; HO 0.599 ± 0.003 0.824 ± 0.003 0.612 ± 0.003 0.847 ± 0.003

Table 8: Abs. sim. and rel. sim. on the full test set with models trained with different masking percentages.



jeQQ\ iV kickiQg Whe ball WR Pike.
Pike iV ZaiWiQg RQ Whe ball.

jeQQ\ iV haYiQg a gUeaW WiPe ZiWh Pike.
jeQQ\ iV kickiQg a beach ball.

Pike iV SUeSaUiQg WR caWch Whe ball.
Whe VXQ iV VhiQiQg RQ Pike aQd jeQQ\.

GroXnd
WrXWh

GeneraWed
DiVcreWe; HC

[Whe VQake iV iQ Whe VaQdbR[.
Pike iV ZeaUiQg a Vill\ haW.

Pike iV VWeeSiQg iQVide Whe VaQdbR[.
WheUe iV a gUeeQ VQake iQ Whe VaQdbR[.

Pike iV afUaid Rf VQakeV.
Whe gUeeQ VQake likeV Pike' V fXQQ\

haW.

GeneraWed
ConWinXoXV; HO

jeQQ\ iV kickiQg Whe ball.
jeQQ\ iV ZeaUiQg VXQ glaVVeV.
Pike iV ZeaUiQg a blXe VhiUW.
jeQQ\ iV kickiQg a VRcceU ball.
jeQQ\ iV ZeaUiQg VXQglaVVeV.

Pike iV haSS\.

jeQQ\ iV UidiQg Whe Uide.
Pike iV RQ Whe gURXQd.

Pike haV a dUiQk.
jeQQ\ iV YeU\ haSS\.
a clRXd iV iQ Whe Vk\.
Pike iV TXiWe aQgU\ .

Pike iV RQ Whe VZiQg.
jeQQ\ haV a Sie.

jeQQ\ aQd Pike aUe haSS\.
Pike iV VZiQgiQg.

jeQQ\ haV bURXghW a Sie.
jeQQ\ iV haSS\ WR Vee Pike.

Pike iV ZeaUiQg a haW.
lighWeQiQg VWUXck Whe SlaQe.

jeQQ\ iV jXPSiQg XS.
Pike iV Á\iQg a kiWe.

Pike iV ZeaUiQg a SRlice haW.
Whe SlaQe iV Á\iQg aZa\.

jeQQ\ iV ViWWiQg RQ Whe Vlide.
Pike iV hRldiQg Whe bXUgeU.

Pike iV ZeaUiQg Whe haW.
Pike iV ZeaUiQg a SiUaWe haW.
Pike iV hRldiQg a haPbXUgeU.
jeQQ\ iV VlidiQg dRZQ a Vlide.

jeQQ\ iV jXPSiQg iQ haSSiQeVV.
Pike iV Vaid aQd ZaYiQg aW jeQQ\.
Pike iV VWaQdiQg Qe[W WR Whe gUill.

Pike iV gUilliQg a haPbXUgeU.
jeQQ\ iV e[ciWed WR eaW Whe haPbXUgeU.
Pike iV XSVeW WheUe iV RQl\ RQe bXUgeU.

Pike aQd jeQQ\ ZeUe Sla\iQg ball.
a big beaUV VcaUeV Pike aQd jeQQ\.

jeQQ\ aQd Pike UXQ aZa\ fURP a beaU.
Whe VRcceU ball iV Qe[W WR Whe WUee.

Pike aQd jeQQ\ aUe UXQQiQg fURP Whe
beaU.

Whe VRcceU ball iV iQ fURQW Rf Whe aSSle
WUee.

Pike WhUeZ Whe fUiVbee.
jeQQ\ iV ZeaUiQg VXQglaVVeV.

WheUe iV a Sie RQ Whe Wable.
jeQQ\ iV ZeaUiQg VXQglaVVeV.
Pike iV ZeaUiQg a chef'V haW.

WheUe iV a Sie RQ Whe SicQic Wable .

Figure 8: Generated spatial arrangements conditioned on language on 10 random samples from the test set.


