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A Experimental Details

A.1 Reproducibility Checklist

Source Code We provide the source code for
both training UMIC and computing UMIC as sup-
plementary material. We will publicly release the
full source with the pre-trained model to easily
compute UMIC.

Computing Infrastructure We use AMD
Ryzen Threadripper 2950X (3.50 GHz) with
GeForce GTX 2080 Ti for the experiments. The
software environments are Python 3.6.8 and
PyTorch 1.1.0.

Average runtime for each approach Each
epoch of our training UMIC on average takes 20
minutes using a single GPU. For evaluation, it takes
a minute.

Number of Model Parameters The number of
parameters in UMIC is about 109.9M.

A.2 Correlation Coefficient

We compute Kendall-C for Flickr8k (Hodosh et al.,
2013), since we could produce the similar results
for most of the previous papers. And we compute
Kendall-B for Composite (Aditya et al., 2015) and
CapEval1k. For Composite, we use five references
and some of the candidate captions are exact same
with one of the references.

A.3 Significance Test

For all of the correlation coefficients we computed
in this paper, we conduct a standard way to test
the significance of the correlation coefficient. We
use a t-test using a null hypothesis that is an ab-
sence of association to report the p-value for each
coefficient.

B Data Collection

B.1 Generating Captions

We generate the captions from the images in
Karphathy’s test split that do not have any over-
laps in the training set and validation set of UMIC.
We use four models, Att2in (Rennie et al., 2017),
Transformer (Vaswani et al., 2017), BUTD (An-
derson et al., 2018), and AoANet (Huang et al.,
2019) to generate captions. We use the pre-trained
model that uses self-critical loss (Luo et al., 2018)
in the public repository 1. We set beam size 2 for

1https://github.com/ruotianluo/self-critical.pytorch

all of the models during the inference. We sample
1,000 captions for a total of 250 images for each
model, where each caption does not have a single
equivalent as shown in Figure 1.

B.2 Instructions to Annotators

The interface and instructions to annotators in
MTurk are shown in Figure 1 and Figure 2. We
request the worker to evaluate four captions at once
in a single assignment so that the worker can con-
sider the difference among the captions.

B.3 Inter-annotator Agreement

We compute the annotator agreement using Krip-
pendorff’s α (Krippendorff, 1970). We observe
that Krippendorff’s α is 0.37 that indicates a “fair“
agreement according to one of the general guide-
lines (Landis and Koch, 1977) for kappa-like mea-
sures.

B.4 Worker Pool & Pay

We hire the annotators whose locations in one of
the US, UK, CA, NZ, AU. We restrict the workers
whose HIT approval rates are higher than 96%,
and minimum hits are over 5000. We pay workers
more than USD $10 in an hour through several
preliminary experiments on the compensation.
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Evaluate the captions comparing them with reference captions and considering "fluency", 
"relevance" and "descriptiveness".
[Image]

[Reference Captions]
Ref1: two ducks floating together on a body of water.
Ref2: two ducks are swimming in the green colored pond.
Ref3: two canadian geese swim in a green pond.
Ref4: two ducks swim in a pond with green water.
Ref5: two swam swimming next to each other on a lake.

Caption 1: a couple of ducks swimming in the water

Caption 2: two ducks swimming in the water in a body of water

Caption 3: three ducks are swimming in the water

Caption 4: three ducks swimming in the water

Read the instructions and examples below and evaluate candidate captions (Click to collapse)

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Figure 1: Annotation interface and short instructions for captioning evaluation task.

[Overview]
In this task, you are supposed to evaluate the quality of the caption for the given 
image.
Please read the image and the captions carefully and assign the score for each caption 
considering three criterias.

[Instructions]
1. Read the candidate captions, reference captions and see the given image.
2. Evaluate the four candidate captions considering three criterias(refer to the negative 
examples below) and comparing them to the reference captions
- Note that reference captions are not always perfect.

Criterias & Common negative examples in the captions
Please consider 3 things comprehensively and rate the overall score for the capture.
(1) Fluency
Whether the caption is fluent, natural and grammatically correct
Ex) Grammatically correct but strange
a plate of food and food
(2) Relevance
Whether the sentence correctly describes the visual content and be closely relevant to 
the image.
Ex) Relevant/Minor Mistake: relevant but tiny parts are wrong
a plate of fruits and a crepe on a grey dish
(3) Descriptiveness
Whether the sentence is a precise, informative caption that describes important details 
of the image.
Ex) Too General Capton
a plate of fruits

Figure 2: Full instructions for the captioning evaluation
task. We provide an image and five reference captions
to the workers and request them to evaluate four cap-
tions.
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