
Appendix A Used notation135

We list the notation used throughout the paper136

V: vocabulary of words137

V: vocabulary of groups138

w, v: a word139

Fw: relative frequency of a word w140

γi, γj : a group141

V× Γ: set of all possible pairs (w, γi)142

cγi : relative frequency of a group γi143

γ: an assignment (grouping)144

H(γ): unigram entropy of a grouping γ145

G
(
cγ′j

)
: partial enropy of a group γi146

C: number of groups147

[1, . . . , C] - natural numbers from 1 to C148

N - natural numbers149

Appendix B Omitted proofs150

Definition 1 (Matroid). Let Ω be a finite set (uni-151

verse) and I ⊆ 2Ω be a set family (independent152

sets). A pairM = (Ω, I) is called a matroid if153

1. ∅ ∈ I154

2. If Q ∈ I and R ⊆ Q then R ∈ I155

3. For any Q,R ∈ I with |R| < |Q| there exists156

{x} ∈ Q \R such that R ∪ {x} ∈ I.157

Let us denote a family of all grouping sets of158

V× V as G.159

Proof of Lemma ??. We have to show that (V ×160

V,G) satisfies three condition from the Defini-161

tion 1.162

1. An empty grouping is a grouping.163

2. Consider an arbitrary Q ∈ G and R ⊂ Q.164

Since Q defines a grouping, for any (w, γi) ∈165

Q we have (wγj) /∈ Q for all γj 6= γi. There-166

fore, for all (w, γi) ∈ R we have (wγj) /∈ R167

given γj 6= γi and thus R defines a grouping168

as well.169

3. Consider two arbitrary R,Q ∈ G with |R| <170

|Q|. Let us denote {w ∈ V : (w, γi) ∈171

Q for some γi} as π(Q). We claim that |Q| =172

|π(Q)|. Otherwise, there must exist w such173

that (w, γi), (w, γj) ∈ Q and γi 6= γj . How-174

ever, this is forbidden for a set which defines a175

grouping. Analogously, |R| = |π(R)|. Since176

both R,Q are finite, we have 0 < |Q \R| =177

|π(Q)| − |π(R)| = |π(Q) \ π(R)|. Consider178

an arbitrary w′ ∈ π(Q) \ π(R) and its group 179

γi′ inQ; we have (w′, γi′) ∈ Q\R. Moreover, 180

since w′ is ungrouped by R, we conclude that 181

R ∪ {(w′, γi′)} ∈ G and finish the proof. 182

183

Definition 2 (Submodular function). A function 184

f : 2Ω → R, where Ω is finite, is submodular if for 185

any X ⊆ Y ⊆ Ω and any x ∈ Ω \ Y we have 186

f (X ∪ {x})− f(X) ≥ f (Y ∪ {x})− f(Y ). 187

For any non-negative real x and fixed a > 0, we 188

denote −(x+ a) log2(x+ a) + x log x as La(x). 189

Proof of Lemma ??. First, we show that H(Q) ≥ 190

0 for all Q ⊆ V × V . By definition, we have 191

H(∅) = 0. Consider an arbitrary non-empty Q ⊆ 192

V× V . For any γi ∈ V we have 193

0 ≤ cγi =
∑
w∈V:

(w,γi)∈Q

Fw ≤
∑
w∈V

Fw = 1. 194

Therefore, −cγi log cγi ≥ 0 and 195

C∑
i=1

L (cγi) ≥ 0. 196

Now we establish submodularity. Consider an 197

arbitraryQ ⊆ V×V ,R ⊂ Q and any (w′, γi′) /∈ Q. 198

Let Q′ := Q ∪ {(w′, γi′)}, R′ := R ∪ {(w′, γi′)}. 199

We need to show that 200

H(R′)−H(R) ≥ H(Q′)−H(Q). (1) 201

Let us denote the frequency of the unigram γj in 202

Q, Q′ as cγj (Q), cγj (Q
′). Since Q and Q′ differ 203

only in the group γi′ we have 204

H(Q′)−H(Q) = 205

− cγi′ (Q
′) log cγi′ (Q) + cγi′ (Q) log cγi′ (Q)

(2)
206

Similarly, (2) holds for H(R′)−H(R). Thus, to 207

proof (1) it is enough to show 208

−cγi′ (R
′) log cγi′ (R

′) + cγi′ (R) log cγi′ (R) ≥ 209

−cγi′ (Q
′) log cγi′ (Q

′) + cγi′ (Q) log cγi′ (Q) 210

We have cγ′i(Q
′) = cγ′i(Q) + Fw′ ; therefore, (2) 211

can be rewritten as LFw′ (cγi′ (Q)). Similarly, 212

cγ′i(R
′) = cγ′i(R)+Fw′ hence we need to establish 213

LFw′ (cγi′ (R)) ≥ LFw′ (cγi′Q). (3) 214



For any (w, i′) ∈ R we have (w, i′) ∈ Q; thus215

cγi′ (R) < cγi′ (Q), and (3) follows from the fact216

that LFw′ (x) is monotone decreasing for all non-217

negative real x.218

Proof of Theorem ??. By the result (Lee et al.,219

2009), the Algorithm ?? outputs the map γ′ such220

that221

1

4 + 4ε
H(γ∗) ≤ H(γ′). (4)222

where γ∗ is the grouping which achieves largest223

value of H . We need to show that the approxima-224

tion guarantee still holds if γ′(w) is undefined for225

some w.226

After Step 8, the groupings γ′ and γ differ only227

for the group i0; thus,228

H(γ)−H
(
γ′
)

= L
(
cγi0

)
− L

(
cγ′i0

)
.229

Assume that H(γ)−H(γ′) < 0. First, there must230

exist j ∈ V such that231

L
(
cγ′j0

)
≤ 1

C
H
(
γ′
)

232

and thus for the group i0 we have233

L
(
cγ′i0

)
≤ 1

C
H
(
γ′
)

(5)234

From (5) and L(x) ≥ 0 we obtain235

L
(
cγi0

)
− L

(
cγ′i0

)
≥ −L

(
cγ′i0

)
≥ − 1

C
H
(
γ′
)

236

hence237

H(γ) ≥ C − 1

C
H
(
γ′
)
≥ C − 1

4C + 4εC
H(γ∗).238

For a single matroid constrain, the algorithm239

from (Lee et al., 2009) runs in time (|Ω|)O(1) where240

Ω is the universe. In our case, Ω = V × V hence241

the running time is O(C|V|)O(1). The rest of the242

Algorithm ?? takes O(C|V|)O(1) steps, thus we243

obtain the stated running time and finish the proof.244

245


