## Appendix A Used notation

We list the notation used throughout the paper
$\mathbb{V}$ : vocabulary of words
$\mathcal{V}$ : vocabulary of groups
$w, v$ : a word
$F_{w}$ : relative frequency of a word $w$
$\gamma_{i}, \gamma_{j}$ : a group
$\mathbb{V} \times \Gamma$ : set of all possible pairs $\left(w, \gamma_{i}\right)$
$c_{\gamma_{i}}$ : relative frequency of a group $\gamma_{i}$
$\gamma$ : an assignment (grouping)
$H(\gamma)$ : unigram entropy of a grouping $\gamma$
$G\left(c_{\gamma_{j}^{\prime}}\right)$ : partial enropy of a group $\gamma_{i}$
$C$ : number of groups
$[1, \ldots, C]$ - natural numbers from 1 to $C$
$\mathbb{N}$ - natural numbers

## Appendix B Omitted proofs

Definition 1 (Matroid). Let $\Omega$ be a finite set (universe) and $\mathcal{I} \subseteq 2^{\Omega}$ be a set family (independent sets). A pair $\mathcal{M}=(\Omega, \mathcal{I})$ is called a matroid if

1. $\emptyset \in \mathcal{I}$
2. If $Q \in \mathcal{I}$ and $R \subseteq Q$ then $R \in \mathcal{I}$
3. For any $Q, R \in I$ with $|R|<|Q|$ there exists $\{x\} \in Q \backslash R$ such that $R \cup\{x\} \in \mathcal{I}$.

Let us denote a family of all grouping sets of $\mathbb{V} \times \mathcal{V}$ as $\mathcal{G}$.

Proof of Lemma ??. We have to show that ( $\mathbb{V} \times$ $\mathcal{V}, \mathcal{G})$ satisfies three condition from the Definition 1 .

1. An empty grouping is a grouping.
2. Consider an arbitrary $Q \in \mathcal{G}$ and $R \subset Q$. Since $Q$ defines a grouping, for any $\left(w, \gamma_{i}\right) \in$ $Q$ we have $\left(w \gamma_{j}\right) \notin Q$ for all $\gamma_{j} \neq \gamma_{i}$. Therefore, for all $\left(w, \gamma_{i}\right) \in R$ we have $\left(w \gamma_{j}\right) \notin R$ given $\gamma_{j} \neq \gamma_{i}$ and thus $R$ defines a grouping as well.
3. Consider two arbitrary $R, Q \in \mathcal{G}$ with $|R|<$ $|Q|$. Let us denote $\left\{w \in \mathbb{V}:\left(w, \gamma_{i}\right) \in\right.$ $Q$ for some $\left.\gamma_{i}\right\}$ as $\pi(Q)$. We claim that $|Q|=$ $|\pi(Q)|$. Otherwise, there must exist $w$ such that $\left(w, \gamma_{i}\right),\left(w, \gamma_{j}\right) \in Q$ and $\gamma_{i} \neq \gamma_{j}$. However, this is forbidden for a set which defines a grouping. Analogously, $|R|=|\pi(R)|$. Since both $R, Q$ are finite, we have $0<|Q \backslash R|=$ $|\pi(Q)|-|\pi(R)|=|\pi(Q) \backslash \pi(R)|$. Consider
an arbitrary $w^{\prime} \in \pi(Q) \backslash \pi(R)$ and its group $\gamma_{i^{\prime}}$ in $Q$; we have $\left(w^{\prime}, \gamma_{i^{\prime}}\right) \in Q \backslash R$. Moreover, since $w^{\prime}$ is ungrouped by $R$, we conclude that $R \cup\left\{\left(w^{\prime}, \gamma_{i^{\prime}}\right)\right\} \in \mathcal{G}$ and finish the proof.

Similarly, (2) holds for $H\left(R^{\prime}\right)-H(R)$. Thus, to proof (1) it is enough to show

$$
\begin{array}{r}
-c_{\gamma_{i^{\prime}}}\left(R^{\prime}\right) \log c_{\gamma_{i^{\prime}}}\left(R^{\prime}\right)+c_{\gamma_{i^{\prime}}}(R) \log c_{\gamma_{i^{\prime}}}(R) \geq \\
\quad-c_{\gamma_{i^{\prime}}}\left(Q^{\prime}\right) \log c_{\gamma_{i^{\prime}}}\left(Q^{\prime}\right)+c_{\gamma_{i^{\prime}}}(Q) \log c_{\gamma_{i^{\prime}}}(Q)
\end{array}
$$

We have $c_{\gamma_{i}^{\prime}}\left(Q^{\prime}\right)=c_{\gamma_{i}^{\prime}}(Q)+F_{w^{\prime}}$; therefore, (2) can be rewritten as $L_{F_{w^{\prime}}}\left(c_{\gamma_{i^{\prime}}}(Q)\right)$. Similarly, $c_{\gamma_{i}^{\prime}}\left(R^{\prime}\right)=c_{\gamma_{i}^{\prime}}(R)+F_{w^{\prime}}$ hence we need to establish

$$
\begin{equation*}
L_{F_{w^{\prime}}}\left(c_{\gamma_{i^{\prime}}}(R)\right) \geq L_{F_{w^{\prime}}}\left(c_{\gamma_{i^{\prime}}} Q\right) \tag{3}
\end{equation*}
$$

For any $\left(w, i^{\prime}\right) \in R$ we have $\left(w, i^{\prime}\right) \in Q$; thus $c_{\gamma_{i^{\prime}}}(R)<c_{\gamma_{i^{\prime}}}(Q)$, and (3) follows from the fact that $L_{F_{w^{\prime}}}(x)$ is monotone decreasing for all nonnegative real $x$.

Proof of Theorem ??. By the result (Lee et al., 2009), the Algorithm ?? outputs the map $\gamma^{\prime}$ such that

$$
\begin{equation*}
\frac{1}{4+4 \varepsilon} H\left(\gamma^{*}\right) \leq H\left(\gamma^{\prime}\right) \tag{4}
\end{equation*}
$$

where $\gamma^{*}$ is the grouping which achieves largest value of $H$. We need to show that the approximation guarantee still holds if $\gamma^{\prime}(w)$ is undefined for some $w$.

After Step 8, the groupings $\gamma^{\prime}$ and $\gamma$ differ only for the group $i_{0}$; thus,

$$
H(\gamma)-H\left(\gamma^{\prime}\right)=L\left(c_{\gamma_{i_{0}}}\right)-L\left(c_{\gamma_{i_{0}}^{\prime}}\right)
$$

Assume that $H(\gamma)-H\left(\gamma^{\prime}\right)<0$. First, there must exist $j \in \mathcal{V}$ such that

$$
L\left(c_{\gamma_{j_{0}}^{\prime}}\right) \leq \frac{1}{C} H\left(\gamma^{\prime}\right)
$$

and thus for the group $i_{0}$ we have

$$
\begin{equation*}
L\left(c_{\gamma_{i_{0}}^{\prime}}\right) \leq \frac{1}{C} H\left(\gamma^{\prime}\right) \tag{5}
\end{equation*}
$$

From (5) and $L(x) \geq 0$ we obtain

$$
L\left(c_{\gamma_{i_{0}}}\right)-L\left(c_{\gamma_{i_{0}}^{\prime}}\right) \geq-L\left(c_{\gamma_{i_{0}}^{\prime}}\right) \geq-\frac{1}{C} H\left(\gamma^{\prime}\right)
$$

hence

$$
H(\gamma) \geq \frac{C-1}{C} H\left(\gamma^{\prime}\right) \geq \frac{C-1}{4 C+4 \varepsilon C} H\left(\gamma^{*}\right)
$$

For a single matroid constrain, the algorithm from (Lee et al., 2009) runs in time $(|\Omega|)^{O(1)}$ where $\Omega$ is the universe. In our case, $\Omega=\mathbb{V} \times \mathcal{V}$ hence the running time is $O(C|\mathbb{V}|)^{O(1)}$. The rest of the Algorithm ?? takes $O(C|\mathbb{V}|)^{O(1)}$ steps, thus we obtain the stated running time and finish the proof.

