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Abstract

Knowledge Distillation (KD) has been exten-
sively used for natural language understand-
ing (NLU) tasks to improve a small model’s
(a student) generalization by transferring the
knowledge from a larger model (a teacher). Al-
though KD methods achieve state-of-the-art
performance in numerous settings, they suf-
fer from several problems limiting their perfor-
mance. It is shown in the literature that the
capacity gap between the teacher and the stu-
dent networks can make KD ineffective. Ad-
ditionally, existing KD techniques do not mit-
igate the noise in the teacher’s output: mod-
eling the noisy behaviour of the teacher can
distract the student from learning more use-
ful features. We propose a new KD method
that addresses these problems and facilitates the
training compared to previous techniques. In-
spired by continuation optimization, we design
a training procedure that optimizes the highly
non-convex KD objective by starting with the
smoothed version of this objective and mak-
ing it more complex as the training proceeds.
Our method (Continuation-KD) achieves state-
of-the-art performance across various compact
architectures on NLU (GLUE benchmark) and
computer vision tasks (CIFAR-10 and CIFAR-
100).

1 Introduction

Deep neural networks have achieved great success
in many challenging tasks including the ones in
natural language processing (Vaswani et al., 2017;
Brown et al., 2020a) and computer vision (Dosovit-
skiy et al., 2020). Most successful neural networks
are usually large and overparametrised (Liu et al.,
2019; Devlin et al., 2018). The big size of these
models prevents them from being deployed on com-
puters with low computational power such as edge
devices. Compressing the models can empower
us to provide a variety of machine learning-based
services offline on low-resource machines. This
issue is even more severe in models designed for

NLP. Although, after the introduction of the Trans-
formers (Vaswani et al., 2017) the performance of
models in this field improved dramatically, the size
of the models increased exponentially. Nowadays,
some of these models have more than 100 billion
parameters (Brown et al., 2020b), and they are still
increasing.

One way to address the expensive computa-
tional complexity of deep networks and their over-
parameterization is neural model compression (Ja-
cob et al., 2018; Tjandra et al., 2018; Bie et al.,
2019). Among all of the compression methods,
Knowledge Distillation (KD) (Hinton et al., 2015)
is one of the prominent techniques which have been
used to compress a variety of models in different
deep learning applications such as Natural Lan-
guage Processing (Clark et al., 2019; Sun et al.;
Jiao et al., 2019; Rashid et al., 2020, 2021; Kamal-
loo et al., 2021; Haidar et al., 2021; Wu et al., 2021),
speech processing (Yun et al., 2020; Chebotar and
Waters, 2016), and computer vision (Mirzadeh
et al., 2019; Guo et al., 2020). In KD, we have a
large accurate network, which is called a teacher,
and a small network, which is called a student, that
we desire to train. The innate capacity gap between
the student and the teacher was speculated (Lopez-
Paz et al., 2015) to impede the training and was ad-
dressed by multiple works (Mirzadeh et al., 2019;
Jafari et al., 2021). However, the existing solu-
tions have several complications: for example,
(Mirzadeh et al., 2019) requires an extra intermedi-
ate network to be trained, and (Jafari et al., 2021)
has a rigid two-stage structure that requires the
careful design for successful training. Moreover,
none of these techniques is robust against the noisy
data and noisy teacher’s outputs, which can distract
the student with the limited capacity from learn-
ing more useful features and make it overfit to the
noise.

We propose a new solution, Continuation KD,
inspired by the continuation method from optimiza-



tion and nonlinear equations. During the train-
ing, we gradually move from the smoothed objec-
tive function, which is robust to overfitting to the
noise, to the original highly non-convex function.
We conduct extensive experiments on the GLUE
benchmark for DistilRoBERTA (6-layer) (Sanh
et al., 2019) and BERT-small (4-layers) (Turc et al.,
2019) core models and show a significant improve-
ment over the previous baselines. Besides that,
we demonstrate that in the computer vision setting
continuation KD also outperforms its competitors.
Overall, our contributions are the following:

1. We proposed a novel KD technique based on
the Continuation method, which gradually in-
creases the complexity of the loss function and
provides a better optimization for all knowl-
edge distillation scenarios in both computer
vision and NLP.

2. We implement a loss function like hinge loss
function which makes a student trained with
our technique robust against the teacher’s out-
put noise.

3. Our proposed method is simple and, unlike
its competitors, does not have several stages.
This feature makes our method stable and effi-
cient.

2 Related Works

2.1 Knowledge Distillation (KD)

Knowledge Distillation (Hinton et al., 2015) is
a well-known neural model compression method.
Despite the success of the original method, it has
been shown in the literature (Lopez-Paz et al.,
2015; Mirzadeh et al., 2019) that the large gap
between the size of the student and the teacher
networks makes KD ineffective. To address this
capacity gap problem, Mirzadeh et al. (2019) pro-
posed the teacher assistant knowledge distillation
(TAKD) method.However, this technique is compu-
tationally expensive as it requires training multiple
TA networks for a task. Moreover, the errors of the
TAs can accumulate and transfer to the student. To
alleviate these problems, Jafari et al. (2021) pro-
posed Annealing-KD that achieved state-of-the-art
performance on NLU and computer vision tasks.
Although this method could handle the capacity
gap problem, it is still not robust against the noisy
data and noisy teacher’s outputs. Also, two phases
of the training require some a priori decisions on

when to switch from the first phase to the second
one.

2.2 Continuation Optimization

Continuation method was first proposed as a numer-
ical method for solving nonlinear equations (Davi-
denko, 1953) and then it was adopted as a heuristic
for nonconvex optimization (Watson, 2000). The
main intuition of the continuation method is to
include the problem we are trying to solve in a con-
tinuous family of problems, such that one of the
members of this family is easy to solve and its so-
lution could be pulled over to give an approximate
solution of the original problem.

Machine Learning community applied the con-
tinuation idea for training neural networks. Mobahi
and Fisher III (2015) proposed the first theoreti-
cal analysis of the bound on the approximate solu-
tion given by the continuation optimization. Gul-
cehre et al. (2017) suggested optimizing highly
non-convex neural networks by starting with a
smoothed objective function and making it more
complex over the training. We adapted this general
method for Knowledge Distillation.

3 Background

Vanilla-KD The original knowledge distillation
(Hinton et al., 2015) trains a small network (a stu-
dent) by using two guiding signals: the hard labels
coming from the training dataset, and the predic-
tions of a large network pre-trained on the same
task (a teacher) which is known as soft labels. To
achieve this goal, Vanilla-KD utilizes a particular
loss function which is a linear combination of two
losses. The first one is a cross-entropy between
the softmax output of the student and hard labels,
and the second one is a KL-divergence between the
softened version of the softmax outputs of the stu-
dent and the teacher networks. Equation 1 explains
this loss function in details:

LKD = λCE(y, σ
(
zS(x)

)
+

(1− λ)KL(σ(zT (x)
τ

), σ(
zS(x)

τ
))

(1)

Here CE(.) is the cross-entropy function, KL(.)
is the KL-divergence function, zT (.) and zS(.) are
the teacher and student logits, σ(.) is the softmax
function, and τ is the softening parameter. Also, λ
is a hyper-parameter between [0, 1] which indicates
the amount of contribution of each loss function.
Minimizing the above loss function decreases the



distance between both underlying function and the
teacher model. In Vanilla-KD usually we assume
that the teacher is a good approximation of the
underlying function.

TAKD In TAKD method (Mirzadeh et al., 2019)
the teacher model first trains an intermediate model
with a slightly smaller capacity, which is called
teacher assistant (TA), by utilizing Vanilla-KD.
Then the TA model trains the student model with a
small capacity by using Vanilla-KD again. TAKD
tries to fill the capacity gap between the teacher and
the student models by introducing the TA model
but this gap can be still large. As mentioned in
(Mirzadeh et al., 2019), a better idea is to use hier-
archical TAs to have a smoother knowledge transfer
from the teacher to the student.

Annealing-KD For controlling the complexity of
the teacher model, instead of using multiple TA net-
works, Annealing-KD (Jafari et al., 2021) adds an
annealed dynamic temperature factor to the output
of the teacher. By using this factor, Annealing-KD
reduces the sharpness of the teacher at the begin-
ning of the training process. Then it increases the
sharpness of the teacher gradually during the train-
ing. Therefore, since the complexity of the teacher
increases gradually during the training time, the
teacher knowledge transfers much more smoothly
to the student than in TAKD.

Annealing-KD has two stages of training where
in the first stage, a student learns from a teacher
for k epochs. During this stage, Annealing-KD
matches the student’s logits to the teacher’s logits
by using a mean square error loss function. At the
beginning of the training the temperature factor sets
to a high value to apply the maximum smoothing
to the output of the teacher and then it decreases
gradually until there is no smoothing effect remains
on the output of the teacher. Formally, one first
defines a monotonically increasing function ϕ :
N→ [0, 1], going from zero at the beginning of the
training to one at the end. Then, the student loss
for stage 1 is:

L(i) = ||zS(x)− ϕ(i)zT (x)||22, (2)

where i is the training epoch, zS(x) and zT (x) are
logit outputs of the student and the teacher respec-
tively. In the second stage, Annealing-KD gets the
best checkpoint of the first stage and finetune it on
the hard labels from the dataset by using a cross-
entropy loss for m epochs. The hyperparameters k
and m must be chosen before the training.

4 Methodology

In this section, we describe our Continuation-KD
technique, which addresses both the capacity gap
problem and the lack of robustness against the noise
in the teacher’s output. Continuation-KD uses a
loss function with two objectives (Eq. 3). The first
objective LCE is a cross-entropy loss term that
trains the student based on the given hard labels.
The second objective LCNT

KD is our proposed an-
nealed hinge loss function that gradually trains the
student to mimic the behaviour of the teacher. In-
spired by the continuation method (Gulcehre et al.,
2017), Continuation-KD starts with an easy ob-
jective to train at the beginning of training. As
the training proceeds, the whole objective function
becomes more and more complex. Formally, the
loss function of the Continuation-KD is defined as
follows:

L = (ψ(i))LCE + (1− ψ(i))LCNT
KD (3)

where 1 ≤ i ≤ n indicates the epoch index with the
maximum number of epochs n. The 0 ≤ ψ(i) ≤ 1
is an increasing function between 0 and 1 where
ψ(1) = 0 at the beginning and it increases during
the training. LCNT

KD defines as:

LCNT
KD = max{0, ∥zS − ϕ(Ti)zT ∥22 −m ϕ(Ti)}

(4)

where zS and zT are the output logits of the stu-
dent and teacher networks, respectively; m is the
margin factor; 1 ≤ Ti ≤ Tmax is the tempera-
ture factor, Tmax is the maximum temperature, and
0 ≤ ϕ(Ti) ≤ 1 is an increasing function. We define
this function as:

ϕ(Ti) = 1− Ti − 1

Tmax
, 1 ≤ Ti ≤ Tmax, Ti ∈ N.

(5)

Note that in Eq. 4, ∥zS − ϕ(Ti)zT ∥22 is a mean
square loss between the student’s logits and the
annealed version of the teacher’s logits. Also,
max{0, ∥zS − ϕ(Ti)zT ∥22 − ϕ(Ti)m} is a hinge
loss with an annealed margin ϕ(Ti)m. This loss
function avoids penalizing negligible differences
(the ones less thanm ϕ(Ti)) between the outputs of
the student and teacher. This feature helps the stu-
dent to learn a meaningful behaviour of the teacher
rather than focusing on higher frequency fluctua-
tions.



Figure 1: Principle diagram illustrating different components of Continuation-KD. The main loss function (purple
box) is a composition of two losses - cross entropy loss LCE and continuation loss LCNT (green boxes). Because
of the smoothing in LCNT with the dynamic factor ϕ, it is an easier objective to optimize than LCE . During the
training, Continuation KD gradually moves from the easier objective to more complex objective with aid of the
dynamic factor ψ.

At the beginning of training, we set T1 = Tmax

which leads to the most softened version of the
teacher’s output (ϕ(T1) = 1

Tmax
). Since we have

ψ(1) = 0, the student only learns the behaviour of
the teacher’s smoothest version, which is an easy
target to learn. Then, during training, we decrease
the temperature, At this phase, functions ψ(i) and
ϕ(Ti) are both increasing which in turn leads to in-
creasing the sharpness of the teacher and smoothly
shifting from the hinge loss to the cross-entropy
loss. Both of these operations increase the com-
plexity of the whole loss function. Note that at the
function ϕ(Ti) also anneals margin m. Its reason
is that smoothing the teacher with ϕ(Ti) damps its
noise as well. Therefore we damp the margin m
with ϕ(Ti) to apply a margin proportional to the
amount of noise in the smoothed version of the
teacher. Figure 1 visualize different components of
continuation-KD.

Also note that, if we set m = 0 and ψ(i) to
the step function in Eq 6, then Continuation-KD
becomes identical to Annealing-KD, where k is the
number of epochs in the first stage and n− k is the
number of epochs in the second stage. This fact
shows that the Annealing-KD is actually a special
case of our Continuation-KD.

ψ(i) =

{
0, 1 ≤ i ≤ k
1, k < i ≤ n

(6)

Algorithm 1 demonstrates the details of
Continuation-KD. It requires a student S, a teacher
T , a dataset D, max temperature Tmax, number
of epochs n, an increasing function ψ, and mar-
gin m as inputs and returns the trained student
at the output. At the beginning, it sets variables
T = Tmax to get the maximum smoothness of
the teacher. Also, variable k indicates the num-
ber of epochs before updating T during training.
Φ and Ψ are the output values of ϕ(i) and ψ(i).
Function GET-MINI-BATCH(D) retrieves a mini-
batch (X,Y ) from the dataset D. Then these data
samples feed into loss functions in the next lines
to get the outputs of LCE and LCNT

KD . Then the
linear combination of line 14 combines these two
losses to get the continuation loss L. Finally, L is
fed into OPTIMIZATION-BACK-PROPAGATION(.)
function to optimize the student network based
on the back propagation of the gradient of this
loss function and update the weights of the
student. This part of the training is identi-
cal to regular training of the neural networks.



SAVE-BEST-CHECKPOINT(.) function checks the
performance of the current student model on a val-
idation dataset. If it is better than the previous
checkpoints, it saves the checkpoint. In the end, we
load the best checkpoint and return it.

In the next section, we report the experimental
results of Continuation-KD method.

5 Experiments

This section demonstrates our evaluation results
comparing Continuation-KD with other baselines
for natural language processing and computer vi-
sion tasks. We compare our method with state-
of-the-art techniques such as annealing-KD (Ja-
fari et al., 2021), TAKD (Mirzadeh et al., 2019)
and other baselines like Vanilla-KD (Hinton et al.,
2015) and training the student only with hard labels.
In the following sub-sections, we will discuss each
in more detail.

5.1 Hardware Details

We trained all our baselines using a single NVIDIA
V100 GPU. All experiments were run using the
PyTorch framework1 and for NLP experiments we
used HuggingFace2 API.

5.2 Image Classification

For the image classification tasks, we used CIFAR-
10 and CIFAR-100 datasets with 10 and 100 classes
respectively. Both of these datasets have 60,000
data samples, and each of them is a 32× 32 pixel
color image. Also, both of these datasets have
50,000 train and 10,000 test samples.

In all of our computer vision (CV) experiments,
ResNet-8 and ResNet-110 models are used as the
student and the teacher respectively. For the TAKD
baseline, the ResNet-20 model is used as the TA
model. Continuation-KD is trained for 200 epochs
with a maximum temperature of 20, a learning rate
of 0.2, and batch size 32. Also, the following ψ(·)
function used in these experiments:

ψ(i) =

{
i

150 , 1 ≤ i ≤ 150

1, i ≥ 150
(7)

The CIFAR-10 and CIFAR-100 experiments re-
sults are reported in Tables 1 and 2. We can see
that Continuation-KD clearly outperforms other

1https://pytorch.org
2https://huggingface.co

baselines. Also, Annealing-KD achieved second-
best results in these experiments. However, other
baselines showed almost similar performances.

Table 1: Comparing the test accuracy of Continuation-
KD, Annealing-KD, TAKD, Vanilla-KD, and finetuning
on CIFAR-10 dataset with ResNet model

Type Training method Accuracy
Teacher(110) from scratch 93.8

TA(20) KD 92.39
Student(8) from scratch 88.44
Student(8) KD 88.45
Student(8) TAKD 88.47
Student(8) Annealing-KD 89.44
student(8) Continuation-KD 90.21

Table 2: Comparing the test accuracy of Continuation-
KD, Annealing-KD, TAKD, Vanilla-KD, and finetuning
on CIFAR-100 dataset with ResNet model

Type Training method Accuracy
teacher(110) from scratch 71.92

TA(20) KD 67.6
student(8) from scratch 61.37
student(8) KD 61.41
student(8) TAKD 61.82
student(8) Annealing-KD 63.1
student(8) Continuation-KD 64.2

5.3 Natural Language Understanding

For the NLU experiments, we use the General Lan-
guage Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2018). The benchmark con-
tains several tasks, including textual entailment
(RTE and MNLI), question-answer entailment
(QNLI), paraphrase (MRPC), question paraphrase
(QQP), sentiment (SST-2), textual similarity (STS-
B), linguistic acceptability (CoLA), and Winograd
Schema (WNLI).

Two types of students with different capacities
are used in these experiments. In our first exper-
iment, we used distilRoBERTa with 6 layers as
our student and RoBERTa-Large (24 layers) as our
teacher. Also, for the TAKD baseline, we used
RoBERTa-base (12 layers) as the teacher assistant
model. For this experiment, the maximum tem-
perature was 10, learning rate was 2e-5, and batch
size was 64. Also, we used the pre-trained distil-
RoBERTa as our student and we fine-tuned it for
30 epochs. The ψ function for this experiment is



Algorithm 1
1: function CONTINUATION-KD(S,T ,D, Tmax, n, ψ(·), m)
2: T = Tmax

3: k = ⌊ n
Tmax
⌋

4: for i = 1 to n do
5: if i mod k = 0 then
6: T = T − 1
7: end if
8: Φ← 1− T −1

Tmax
,Ψ← ψ(i)

9: X,Y ← GET-MINI-BATCH(D)
10: LCE ← CE(σ(S(X)), Y )
11: LCNT

KD ← max{0, ∥S(X)− ΦT (X)∥22 −m Φ}
12: L = ΨLCE + (1−Ψ)LCNT

KD

13: OPTIMIZATION-BACK-PROPAGATION(L)
14: SAVE-BEST-CHECKPOINT(S)
15: end for
16: S ← LOAD-BEST-CHECKPOINT( )
17: return S
18: end function

defined as following:

ψ(i) =

{
i
40 , 1 ≤ i ≤ 20

1, 20 < i ≤ 30
(8)

Tables 3 and 4 show the results of this experi-
ment on the dev set and test set. As shown in these
tables, Continuation-KD achieved superior results
in most of the tasks and it improves the previous
baselines with a good overall average score.

For the second experiment, we utilize BERT-
large (24-layers) as the teacher, BERT-Small (4-
layers) as the student and BERT-base (12-layers)
as the teacher-assistant for TAKD. We train the
teacher for 30 epochs, and for the student, we use
the same hyperparameters as the first experiment.
We report the results in Tables 5 and 6. Here,
Continuation-KD also outperforms other baselines
and gets better overall performance than its com-
petitors.

All presented results in our experiments show
that continuation-KD performs better than TAKD
and Annealing-KD, which indicates the effective-
ness of this method. The experimental results sup-
port the claim that our proposed Continuation-KD
can provide a better generalization than the other
methods.

6 Analysis

To investigate how Continuation-KD works, we did
two ablation studies explaining different aspects of

this technique: effects of the dynamically changing
factors and noise mitigation.

Effects of Dynamic Factors ϕ and ψ. In the first
ablation, we scrutinize the effect of each dynami-
cally changing component of the Continuation-KD
loss function. It basically considers the effect of
functions: ψ(i) from Eq. 3, ϕ(Ti) when it anneals
the outputs of the teacher in Eq. 4, and ϕ(Ti) when
it anneals the margin of the hinge loss in Eq. 4.
To investigate the effects of these components, we
repeat the NLU experiments with distilRoBERTa
model described in section 5.3 on MRPC and RTE
datasets three times. In each trial, we fixed two of
the components, and we only let one of them dy-
namically change during training. Table 7 reports
the performance of each of these experiments. The
first three columns of this table show the perfor-
mance of distilRoBERTa on each of the datasets
when only one of the three dynamical components
changes and two others are fixed. The last col-
umn shows the performance of the model on these
datasets in a regular training when all components
dynamically change. In the first column, the ϕ = 1
is fixed for both teacher and margin. In the second
column, the margin’s coefficient is fixed to 1 and
ψ = 0.5. Also, in the third column, the teacher’s
coefficient is fixed to 1 and ψ = 0.5.

As shown in Table 7, for both datasets, the perfor-
mance in the first three columns is almost similar,
which indicates the equal contribution of each dy-



(a) (b)

Figure 2: (a) Illustrates the behaviour of the student model after training with a noisy teacher without using
continuation-KD. (b) Illustrates the behaviour of the student model after training with a noisy teacher by using
continuation-KD for training. Blue points are the samples from the noisy teacher. Orange points are the samples of
the trained student in each scenario.

Table 3: DistilRoBERTa results for Continuation-KD on dev set. F1 scores are reported for MRPC, pearson
correlations for STB-B, and accuracy scores for all other tasks.

KD Method CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI score
Teacher 68.1 86.3 91.9 92.3 96.4 94.6 91.5 90.22 88.91
Finetune 59.3 67.9 88.6 88.5 92.5 90.8 90.9 84 82.81

Vanilla-KD 60.97 71.11 90.2 88.86 92.54 91.37 91.64 84.18 83.85
TAKD 61.15 71.84 89.91 88.94 92.54 91.32 91.7 83.89 83.91

Annealing KD 61.67 73.64 90.6 89.01 93.11 91.64 91.5 85.34 84.56
Continuation-KD 63.75 77.62 91.93 89.71 93.58 91.76 91.64 85.16 85.64

Table 4: Performance of DistilRoBERTa trained by Continuation-KD on the GLUE leaderboard compared with
Vanilla-KD, TAKD, and annealing KD.

KD Method CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI score
Finetune 52.97 74.56 87.93 84.9 93.1 90.57 83.4 88.77 82.02

Vanilla-KD 54.3 74.1 86 85.7 93.1 83.6 90.8 89.5 82.14
TAKD 53.2 74.2 86.7 85.6 93.2 83.8 91 89.4 82.14

Annealing KD 54 73.7 88 87.0 93.6 83.8 90.8 89.7 82.58
Continuation-KD 54.5 74.2 90 87.0 93.8 84.7 91.6 90.1 83.24

Table 5: BERT-Small results for Continuation-KD on dev set. F1 scores are reported for MRPC, pearson correlations
for STS-B, and accuracy scores for all other tasks.

KD Method CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI score
Teacher 65.8 71.48 91.38 89.2 92.77 92.82 91.45 86.3 85.15
Finetune 41.7 64.98 83.75 87.41 88.3 86.49 88.43 78.42 77.44

Vanilla-KD 41.89 64.98 86 85.95 88.76 86.75 88.24 78.62 77.65
TAKD 40.2 65.7 85.23 86.44 88.88 86.78 88.4 78.78 77.55

Annealing-KD 41.36 64.9 87.93 87.04 89.56 86.99 88.58 78.66 78.13
Continuation-KD 41.51 65.26 89.44 87.81 90.21 87.52 90.61 79.27 78.95



Table 6: BERT-Small results for Continuation-KD on test set. F1 scores are reported for MRPC, pearson correlations
for STS-B, and accuracy scores for all other tasks.

KD Method CoLA RTE MRPC STS-B SST-2 QNLI QQP MNLI score
Finetune 38.1 61.8 83.4 78.8 89.7 86.4 78.1 77.6 74.24

Vanilla-kd 37.3 63.4 80.6 78.2 90.2 86.5 78.3 78.3 74.09
TAKD 38.5 62.3 80.5 79.3 89.7 86.7 78 78.2 74.14

Annealing-KD 38.3 63.3 81.9 80.6 89.8 86.8 78.4 79.3 74.78
Continuation-KD 38.5 64.8 84.6 82.5 90.6 87.2 80.1 79.5 75.98

namic component in the improvement of the results.
Also, the last column shows the dramatic improve-
ment in the performance. Hence, we can conclude
from this experiment that all three dynamic com-
ponents are necessary for achieving better perfor-
mance.

Table 7: Performance of distilRoBERTa on MRPC and
RTE datasets for different dynamically changing com-
ponents of continuation-KD loss

dataset ψ ϕ (teacher) ϕ (margin) all
MRPC 91.09 91.21 90.90 91.93
RTE 72.56 73.64 71.48 77.62

Noise Robustness In the second ablation study,
we visualize the effect of Continuation-KD with
a noisy teacher. For this purpose, we consider a
sinusoidal function with low frequency, and then
we add to it a sinusoidal noise with high frequency
(blue curves in Figure 2). Then, we take a fully
connected network with one-dimensional input and
output and two hidden layers with 128 neurons in
each layer as a student model. We sample 3,000
points from the graph of the noisy sinusoidal func-
tion and train the student model once with Vanilla-
KD and once with Continuation-KD (orange curves
in Figure 2). As Figure 2 shows, the model trained
with Continuation-KD has a much smoother curve
in comparison with the model trained with vanilla-
KD and could learn the main behaviour of the
teacher function rather than learning noise.

7 Conclusion

In this work, we present Continuation-KD, a novel
KD method inspired by Continuation optimization.
Our Continuation-KD technique starts optimizing
a smoothed version of the objective function and
gradually increases the complexity of the loss to-
wards the original, highly non-convex one. We
demonstrated that our method alleviates the capac-
ity gap problem: an innate problem of KD resulting

from the different capacities of a student’s and a
teacher’s networks which detriments the perfor-
mance. Besides that, we show that the method
can lessen the student’s overfitting to noise in the
teacher’s output. Our technique is stable because
it doesn’t require two stages in the training and is
efficient. It outperforms its competitor KD meth-
ods for different backbone models’ architectures in
both computer vision and NLP.

For this investigation, we proposed to implement
Continuation method by smoothing the objective
with the hinge loss. However, it can potentially be
done differently. Investigating other realizations
of Continuation Optimization for improving small
models’ performance is an interesting next step.

Limitation

One of the advantages of our proposed method is
that it mitigates the noise in the teacher’s output
and prevents the student from overfitting to the
noise. We empirically demonstrate this claim, but
we don’t have rigorous theoretical proof of how
continuation method achieves this robustness.
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