
A Affine Calibration with α = 1

In this appendix we derive an expression for β for
logistic regression calibration when fixing α = 1
(see Section 4 in the main paper). That is, we
assume the following expression for the calibrated
posterior:

log P̃ (yk|q, e) = γ + logP (yk|q, e) + βk (13)

where the γ is simply a scaling factor so that the
resulting posteriors add to 1 (see Section 4 for the
expression for γ).

Given a set Ctrain = {(q(1), y(1)), . . . ,
(q(N), y(N))} where q(i) and y(i) are the query and
the class of sample i, the logistic regression ap-
proach estimates the βk parameters as the values
that minimize
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To obtain an expression for the βk we can set to
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where �{·} is the indicator function and γ(i) is de-
fined in equation 8. Then,
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Setting this derivative to zero, we get:
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where Nk is the number of samples that belongs to
class k. Using Equation Equation (13), we obtain

the expression for the optimal βk
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B Additional Results

Figure 4 shows the results when the number of
training samples is set to 40. Some of the curves
like the one corresponding to the cross-entropy of
the calibrated model in the DBPedia dataset that
could not be fully plotted because cross-entropy
could not be computed for a class with zero train
probability. This may occur because some classes
were never seen in the train set that was used in the
calibration process.

The trends are similar to those shown in sec-
tion 7 with the exception that SUCPA works worse
than UCPA in most cases due to a bad estimate of
the class priors. In addition, there are some cases
such as TREC, in which adaptation improves the
performance of the model but it still present a cross-
entropy close to 1, which means that performance
remains close to random.



Figure 4: Cross-Entropy and Error Rate (1-Accuracy) vs. the number examples (shots) contained in the prompt for
40 training samples. Red lines show the iterative approach for UCPA and SUCPA. Lines in purple show the results
for content-free adaptation and green line is the calibration using parameters α and β. As before, black line shows
the case for which no adaptation has been performed.


