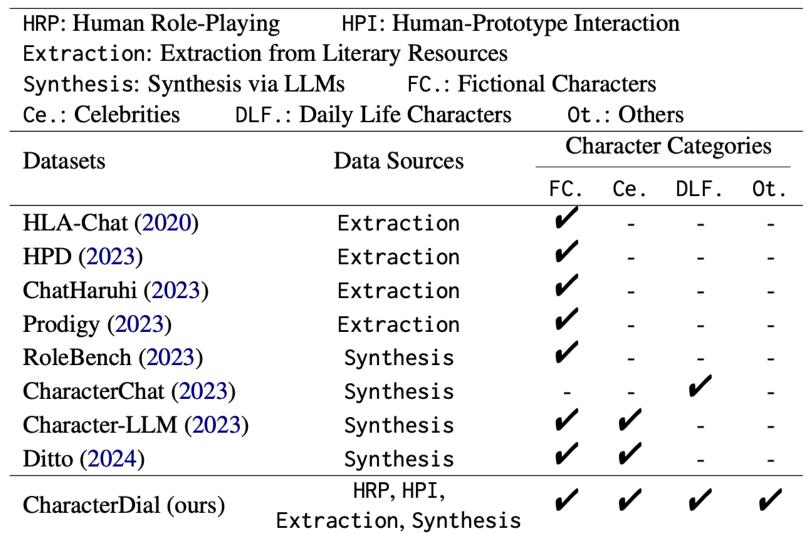
haracterGLM: Customizing Social Characters with Large Language Models

TSING TO THE TOTAL PROPERTY OF THE PARTY OF

Jinfeng Zhou^{1*}, Zhuang Chen^{1*}, Dazhen Wan^{2*}, Bosi Wen^{1*}, Yi Song^{1*},

Jifan Yu³, Yongkang Huang², Pei Ke¹, Guanqun Bi¹, Libiao Peng², Jiaming Yang², Xiyao Xiao², Sahand Sabour¹, Xiaohan Zhang¹, Wenjing Hou⁵, Yijia Zhang², Yuxiao Dong^{4,6}, Hongning Wang¹, Jie Tang^{4,6}, Minlie Huang^{1†}

¹The CoAI Group, DCST, Tsinghua University ²Lingxin AI ³Dept. of Computer SCi. & Tech., Tsinghua University ⁴Zhipu AI ⁵Renmin University of China ⁶Knowledge Engineering Group, DCST, Tsinghua University ^{*}Equal contribution. [†]Corresponding author. https://ai-topia.com https://github.com/thu-coai/CharacterGLM-6B zif23@mails.tsinghua.edu.cn , aihuang@tsinghua.edu.cn


Introduction

> Character-based (aka role-playing) Dialogue System

- Character-based dialogue systems (CharacterDial), e.g., Character.AI, enable users to freely customize social characters for social interactions.
- They are built upon LLMs and allow users to engage with AI in a more personal, emotionally supportive manner, addressing a range of scenarios from casual chit-chatting to deeper emotional companionship.

> Existing Challenges

- The generalizability of social characters across diverse scenarios.
 - Existing work builds training corpora only via LLM synthesis or extracting from literature resources, with a narrow range of character categories, as shown in Table 1.
- The adaptability of social characters in evolving conversations.
 - A naive way is to prompt LLMs to play specific characters.
 - This way relies only on static profiles and could struggle in the later stages of the multi-turn conversations, as shown in Figure 1.

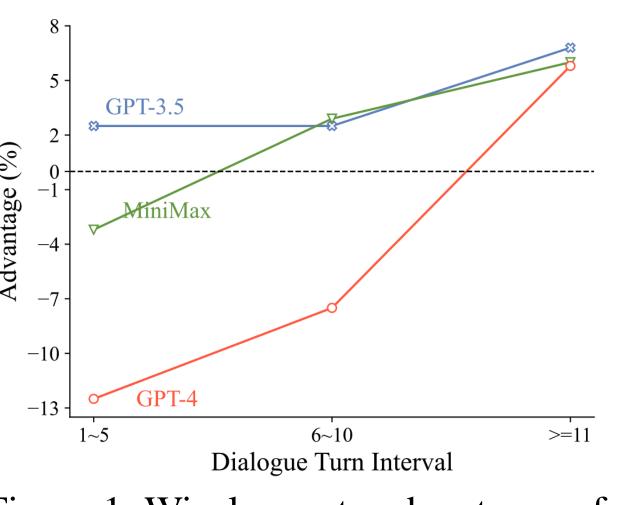


Table 1: Comparison of our data with related datasets on character-based dialogue.

Figure 1: Win-lose rate advantages of our tuning-based CharacterGLM-66B against tuning-free models by dialogue turn interval in the interactive pairwise evaluation

Implementation of CharacterGLM

- > Social Traits of Social Characters (Implementation Principal)
 - Inherent social profile, including attributes and styles.
 - External social behavior, including consistency, human-likeness, and engagement.
- > Character-Based Dialogue Collection (ensuring generalizability)
 - Four ways to manually construct a large-scale character-based dialogue corpus, i.e., human role-playing, synthesis via LLMs, extraction from literary resources, and human-prototype interaction.
- ➤ Model Training (ensuring adaptability)
 - Supervised Fine-tuning and Refinement (self-refinement and DPO) methods are used to optimize the character customization of LLMs.
 - CharacterGLM models vary in size from 6B to 66B.

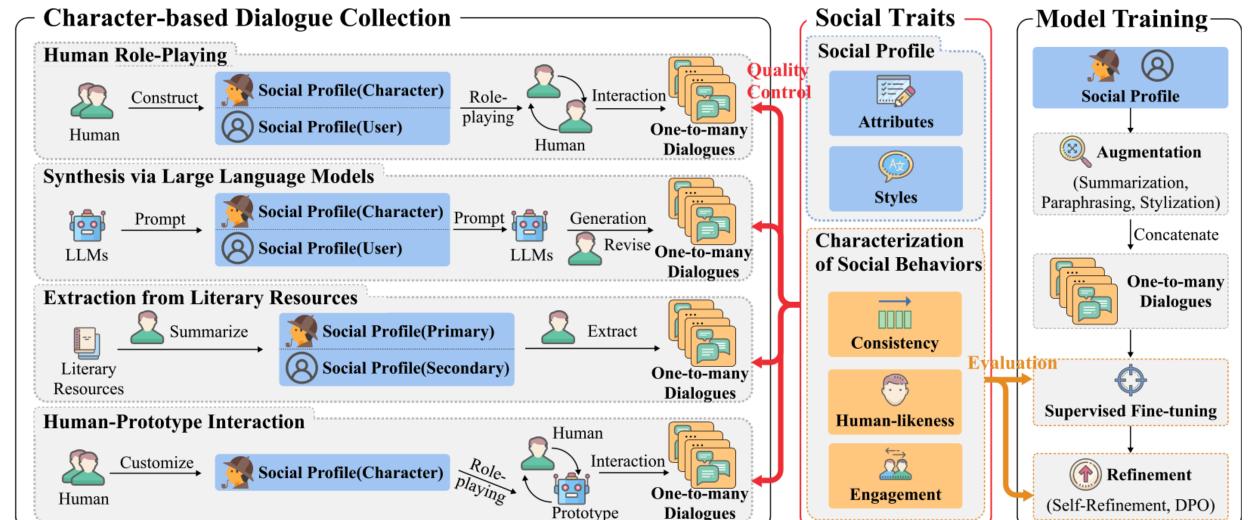


Figure 2: Implementation of CharacterGLM. One-to-many means crafting multiple dialogues for a single character.

Experiments

> Interactive Pointwise Evaluation

- 10 annotators, each tasked with creating two characters to interact with 12 models for at least 20 dialogue turns.
- Annotators score the models on 7 metrics on a 1 to 5 scale.

Models	Overall [†]	Consistency↑	Human-likeness↑	Engagement [†]	Quality [†]	Safety [↑]	Correctness [†]
ChatGLM2	2.64	2.73	2.33	2.62	2.97	4.74	4.15
GPT-3.5	3.49	3.83	3.23	3.38	4.10	5.00	4.87
SparkDesk	3.54	3.71	3.15	3.36	3.97	5.00	4.72
ERNIEBot	3.56	3.88	3.54	3.74	4.23	4.96	4.77
Xingchen	3.90	3.88	3.92	3.79	3.92	4.96	4.87
Baichuan	3.90	4.00	3.46	3.90	4.28	4.96	4.77
Qwen	3.97	4.03	3.62	3.72	4.36	5.00	<u>4.79</u>
MiniMax	4.10	4.18	<u>4.05</u>	4.00	4.33	<u>4.99</u>	4.69
GPT-4	<u>4.15</u>	4.33	4.00	3.97	4.44	5.00	4.87
CharacterGLM-6B	3.08	3.73	3.49	2.92	3.49	4.92	4.87
CharacterGLM-12B	3.33	3.94	3.36	3.21	3.67	4.92	4.87
CharacterGLM-66B	4.21	4.18	4.33	4.23	4.44	<u>4.99</u>	4.87

Table 2: Results of interactive pointwise evaluation.

> Interactive Pairwise Evaluation

- 10 annotators, each creating 24 characters distributed evenly across three categories to interact with 2 models for at least 20 dialogue turns.
- Annotators compare 2 models' outputs at an overall level.

CharacterGLM-66B vs.		Character Catego	ry	1	O11		
	Celebrities Daily Life Characters I		Fictional Characters	Chit-Chat	Interviews	Companionship	Overall
	win/tie/lose(%)	win/tie/lose(%)	win/tie/lose(%)	win/tie/lose(%)	win/tie/lose(%)	win/tie/lose(%)	win/tie/lose(%)
GPT-3.5	45/14/41	47/10/43	47/9/44	47/8/45	44/15/41	48/10/42	46/11/43
$Advantage(\uparrow)$	+4	+4	+3	+2	+3	+6	+3
MiniMax	51/10/39	46/6/48	48/6/46	47/6/47	50/8/42	47/6/47	48/7/45
$Advantage(\uparrow)$	+12	-2	+2	0	+8	0	+3
GPT-4	35/22/43	47/9/44	45/6/49	40/13/47	35/22/43	50/5/45	44/11/45
$Advantage(\uparrow)$	-8	+3	-4	-7	-8	+5	-1
CharacterGLM-6B	63/2/35	69/2/29	67/3/30	67/2/31	66/3/31	68/1/31	67/2/31
$Advantage(\uparrow)$	+28	+40	+37	+36	+35	+37	+36
CharacterGLM-12B	57/6/36	61/4/35	60/5/35	60/4/36	61/5/34	60/6/34	60/5/35
$Advantage(\uparrow)$	+21	+26	+25	+24	+27	+26	+25

Table 3: Results of Interactive pairwise evaluation on three character categories and three dialogue scenarios.

> Static Pointwise Evaluation

randomly extract 100 sessions containing 100 characters from our col-lected data as test data.

Models	Overall	Consistency [↑]	Human-likeness↑	Engagement [†]	Quality [↑]
Qwen	2.79	2.98	2.93	2.85	3.00
GPT-3.5	2.96	3.23	3.09	3.10	3.16
ChatGLM2	3.04	3.42	3.45	3.55	3.30
Baichuan	3.06	3.37	3.44	3.38	3.38
MiniMax	3.37	3.44	3.56	3.43	3.79
GPT-4	<u>3.45</u>	3.47	<u>3.64</u>	3.62	3.57
CharacterGLM-66B	3.69	3.46	3.70	3.72	3.83
kappa↑	0.53	0.51	0.52	0.48	0.70

Table 4: Results of static pointwise evaluation.

> Static Pairwise Evaluation

Test Set	Win	Tie	Lose	Improve.(†)
Human Role-Playing	57.2	3.3	39.5	17.7
Human-Prototype Interaction	50.8	7.2	41.9	8.9
Bad Case	27.6	61.1	11.3	16.3

Table 5: Results (%) of **CharacterGLM-66B-DPO** vs. **CharacterGLM-66B**. *Improve*. is the *Win-Lose* rate.

Interactive Examples

