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TL;DR

• In this paper, we propose the Mixture of Diverse Size Experts (MoDSE),
a new MoE architecture with layers designed to have experts of different
sizes. Our analysis of difficult token generation tasks shows that experts of
various sizes achieve better predictions, and the routing path of the experts
tends to be stable after a training period.

• To tackle the uneven workload distribution from diverse sizes experts, we in-
troduce an expert-pair allocation strategy to distribute the workload across
multiple GPUs evenly.

• Comprehensive evaluations across multiple benchmarks demonstrate the ef-
fectiveness of MoDSE, as it outperforms existing MoEs by allocating the
parameter budget to experts adaptively while maintaining the same total
parameter size and inference speed.

Model

• Diverse Size Experts:

We denote the designed Diverse Size Experts as {Ê1(·), · · · , ÊN (·)}, and
the dimension of the hidden layer for Êi(·) is ĥi, h is the dimension of the
hidden layer in conventional MoE structure.

To maintain the overall parameter size, the experts are grouped into pairs
(i1k, i

2
k), where k ∈ 1 · · ·n indicates the pair of the experts. The average

value of ĥi within each pair equals h, with one expert being larger than the
average size and the other smaller. Typically, the number of experts is even,
ensuring the experts can be grouped into pairs, thus the total parameter size
of the MoDSE model matches that of the vanilla MoE model.
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Fig. 1: Overview of a MoDSE layer with different sizes of experts.

• Load Balance Consideration:

In MoDSE, experts with hidden layer sizes larger than the average have a
higher workload due to increased parameters, both during training and in-
ference phrases. To address this load imbalance problem, we propose the
expert-pair allocation strategy, which places each pair of experts on the
same GPU and ensures that each GPU contains an equal number of param-
eters.

Analysis on Token Routing

• The ratio between the largest and the smallest number of tokens routed to the ex-
perts in the baseline model ranges from 1.2 to 3.0. The statistics for the MoDSE
setting show a non-uniform distribution, with ratios larger than 3.0 appearing, partic-
ularly in the first 2 layers of the model and for the experts with the second largest
probability.

• But in the last epoch, only one ratio remains larger than 3.0, with the others ranging
from 1.5 to 3.0, indicating that the token distribution among experts becomes more
balanced by the end of the training.

• As shown in Figure 2(c, d), it is notable that the experts chosen by the most tokens
are not always the ones with larger sizes. Conversely, experts with larger sizes can
sometimes be the least visited by the tokens.

Fig. 2: The number of tokens routed to each expert. The bar is the sum of the number across the layers.
Figure (a) shows results in Baseline in epoch 2, and (b) in the last epoch. Figure (c) shows results in

MoDSE in epoch 2, and (d) in the last epoch. The purple bar indicates the most routed expert, and the
yellow indicates the least.

loss threshold avg. loss red. #tokens
2.0 0.58 180
1.8 0.46 222
1.6 0.36 337
1.4 0.32 730
1.2 0.22 1991
1.05 0.18 3633

Table 3. Average CE loss reduction across different intervals. The higher the initial CE loss, the more
significant the improvement demonstrated by the MoDSE model. The avg. loss red. stands for the

average CE loss decrease from baseline to MoDSE.

Difficult Tokens Routing Distribution

• To identify which experts handle the difficult tokens, further analysis is conducted on
the 180 tokens with a CE loss greater than 2.0 in the baseline setting.

• For these difficult tokens, as shown in Figure 4, more tokens choose the larger ex-
perts, while fewer tokens select the smaller experts. This phenomenon is even more
pronounced when only considering the top one expert. More than twice as many
tokens (6215) chose the larger experts compared to the smaller ones (3085).

• This result indicates that the larger experts, with capabilities to handle tokens with
more difficult prediction tasks, are more frequently chosen by tokens facing more
challenging next-token generation tasks.

Results

• Evaluations & Decoding Efficiency:

Benchmark MoE MoDSE MoE MoDSE
AGIEval [Acc., 5 shots, 615] 26.2 28.1 48s 59s
MMLU [Acc., 5 shots, 2341] 26.5 29.9 3min 26s 3min 27s
INTENT [Acc., 5 shots, 741] 13.6 16.5 1min 31s 1min 34s
GSM8K [EM, 8 shots, 100] 5.9 7.7 20min 26s 20min 43s

LAMBADA [EM, 5 shots, 100] 36.8 38.9 40min44s 40min48
MATH [EM, 5 shots, 100] 0.8 2.6 21min 21s 21min 34s

TriviaQA [EM, 5 shots, 100] 5.2 8.3 46min 53s 48min 55s
PIQA [EM, 5 shots, 100] 53.1 57.6 44min56s 43min34s
SIQA [EM, 5 shots, 100] 42.9 60.9 2min35s 2min36s

The second and third columns compare the MoE baseline and MoDSE on a
size of 700M × 8. With the same amount of parameters, MoDSE achieves
better performance than the baseline.

The fourth and fifth columns show the inference duration of the baseline and
MoDSE models on downstream tasks.

• Training Convergence:

Fig. 3: Training and validation loss curves, with cross-entropy loss values indicated on the curves.

Fig. 4: The top one expert choice of difficult tokens across eight layers. More tokens are routed to
larger experts, distributed on the left half of the heat map.


