
ScaleLLM: A Resource-Frugal LLM 

Serving Framework by Optimizing 

End-to-End Efficiency
Yuhang Yao, Han Jin, Alay Dilipbhai Shah, Shanshan Han, Zijian Hu, Yide Ran, Dimitris

Stripelis, Zhaozhuo Xu, Salman Avestimehr, and Chaoyang He



Overview of ScaleLLM Serving System

Gateway and serving engine are the key components.



Optimize LLM Serving Engine

● Model Parallelization

● Model Quantization: fp8

● Continuous Batching and Batch Scheduler

● FlashAttention and PagedAttention



Evaluation of LLM Serving Latency

Comparisons with the 

two baseline solutions. 

ScaleLLM is applied 

without gateway 

optimization.

Gateway becomes the new bottleneck after optimizing the Seving Engine



Optimize Gateway Latency

Key Features:

● CPU Bound Job 

Optimization

● Network I/O Bound 

Job Optimization



Evaluation of LLM Serving Latency

Send X concurrent 

requests and record 

the latency



Latency with Streaming Output

Smaller TTFT means faster response for the first token and smaller TBT means faster generation of tokens. 

Timeout: 90% of the users’ requests cannot complete in 60s.



Throughput vs Number of Concurrent Requests.

Optimizing 

gateway is as 

important as 

optimizing 

engine



ScaleLLM on Mixtral-8x7B

https://tensoropera.ai/prod/model/mistralai/ScaleLLM-Mixtral-8x7B

https://tensoropera.ai/prod/model/mistralai/ScaleLLM-Mixtral-8x7B


A Bad Inference Optimization Strategy

1. Find something in the paper/arxiv/blog

May not suitable of the current system

1. Spend time understand and integrate

Waste time in research/development

1. Measure the speedup

Maybe the gain is less than 10%



A Good Inference Optimization Strategy

1. Apply the current infrastructure

Start with the current solution.

1. Profile the efficiency bottleneck

Quantify the impact of each part in the endpoint

1. Always solve the most inefficient bottleneck

Search for the right techniques and apply



Endpoints Throughput Evaluation

● Comparable with 

State-of-The-Art 

endpoints

● 1.5X faster when 
sending 64 

concurrent requests



Blueprint: Dynamic Inference Load Balancing System

Low concurrency (< 64 requests)

Fewer replicas but higher tensor parallelism

to optimize resource utilization for smaller 

batch computations.

High concurrency (≥ 64 requests)

More replicas but lower tensor parallelism

effectively distributing the workload to 

squeeze everything out of available 

compute.


	Slide 1: ScaleLLM: A Resource-Frugal LLM Serving Framework by Optimizing End-to-End Efficiency
	Slide 2: Overview of ScaleLLM Serving System 
	Slide 3: Optimize LLM Serving Engine
	Slide 4: Evaluation of LLM Serving Latency 
	Slide 5: Optimize Gateway Latency 
	Slide 6: Evaluation of LLM Serving Latency 
	Slide 7: Latency with Streaming Output
	Slide 8: Throughput vs Number of Concurrent Requests.
	Slide 9: ScaleLLM on Mixtral-8x7B 
	Slide 10: A Bad Inference Optimization Strategy
	Slide 11: A Good Inference Optimization Strategy
	Slide 12: Endpoints Throughput Evaluation
	Slide 13: Blueprint: Dynamic Inference Load Balancing System 

