Sample Design Engineering: An Empirical Study on Designing Better Fine-Tuning Samples for Information Extraction with LLMs

Biyang Guo¹⁺, He Wang¹⁺, Wenyilin Xiao¹⁺, Hong Chen²⁺, Zhuxin Lee³, Songqiao Han^{4,1*}, Hailiang Huang^{1,5*}

¹AI Lab, SIME, Shanghai University of Finance and Economics ²Ant Group ³Guangdong Yunxi Technology ⁴Key Laboratory of Interdisciplinary Research of Computation and Economics, Ministry of Education, China ⁵Shanghai University of Finance and Economics-Ant Group Joint Laboratory of Frontier Financial Intelligence

Why do we need Sample Design Engineering(SDE) compared to Prompt Engineering(PE)

- The efficacy of PE relies on the size of LLMs.
- Companies prefer customizing smaller, open-source models for their needs due to high costs and privacy risks of large models.

Information extraction (IE) require our focus

- IE tasks is highly valuable in a wide range of industrial scenarios.
- There's a fundamental challenge arises from the discrepancy between the unstructured nature of the LLMs' generative paradigm and the requirement for structured output.

SDE Options

Input Design Optic

Output Design Option Natural

Prompt

Engineering

For zero-shot/ICL

Sample Design

A1: S1, A2: S2, A3: S3, ..., A6: S6

Motivation

-> Input

For downstream-tuning Trainable, smaller open-source LLMs

→Output

LLMS

Frozen, very large LLMs

Input Design Options (1)Instruction Placement (2)Input Modeling

Output Design Options (1) Multiple Predictions Formatting (2) Handling of Unmentioned Targets (3)Textual or numerical labels

Reasoning Design Options

Experiments I: Evaluating The Impact of Each SDE Option

Experiments II: A Robust Integrated SDE Strategy

Evaluate from 2 perspectives

- Sentiment analysis performance
- Format adherence

KEY CONCLUSIONS:

- Better to place *instruction first*
- *Lines* format is reliable
- **Placeholders for Unmentioned** targets is better than Omit them Subtle impact of *CoT* on ID, while significant on OOD

(a) Performance of different sample design strategies with increasing training sizes: 500, 1000, 2000 and 4000. (b) Robustness on decoding sampling randomness, training size = 500. (c) Robustness on instruction content variation, training size = 500.

Empirically Strong SDE Strategy (ES-SDE)

Use the well performing options in Experiments I: Inst-first, No-MI input designs Lines, PU(Placeholders for Unmentioned), TxtLabel output designs

KEY CONCLUSIONS:

ES-SDE maintains advantages across tasks and training sizes ES-SDE is stable on decoding randomness ES-SDE is robust to instruction variation

