SubmissionNumber#=%=#280 FinalPaperTitle#=%=#ShefCDTeam at SemEval-2024 Task 4: A Text-to-Text Model for Multi-Label Classification ShortPaperTitle#=%=# NumberOfPages#=%=#8 CopyrightSigned#=%=#Maggie Mi JobTitle#==# Organization#==#Department of Computer Science The University of Sheffield Regent Court 211 Portobello Sheffield S1 4DP UK Abstract#==#This paper presents our findings for SemEval-2024 Task 4. We submit only to Subtask 1, applying the text-to-text framework to this task using a Flan-T5 model with a combination of parameter-efficient fine-tuning methods - Low-Rank Adaptation and Prompt Tuning. Overall, we find that the system performs well in English, but performance is limited in Bulgarian, North Macedonian and Arabic. Our analysis raises interesting questions about the effects of label order and label names when applying the text-to-text paradigm. Author{1}{Firstname}#=%=#Meredith A. Author{1}{Lastname}#=%=#Gibbons Author{1}{Username}#=%=#magibbons Author{1}{Email}#=%=#magibbons1@sheffield.ac.uk Author{1}{Affiliation}#=%=#University of Sheffield Author{2}{Firstname}#=%=#Maggie Author{2}{Lastname}#=%=#Mi Author{2}{Username}#=%=#mmi01 Author{2}{Email}#=%=#zmi1@sheffield.ac.uk Author{2}{Affiliation}#=%=#University of Sheffield Author{3}{Firstname}#=%=#Xingyi Author{3}{Lastname}#=%=#Song Author{3}{Username}#=%=#deansong Author{3}{Email}#=%=#x.song@sheffield.ac.uk Author{3}{Affiliation}#=%=#University of Sheffield Author{4}{Firstname}#=%=#Aline Author{4}{Lastname}#=%=#Villavicencio Author{4}{Username}#=%=#avill Author{4}{Email}#=%=#avill@essex.ac.uk Author{4}{Affiliation}#=%=#Essex ========== èéáğö