RedHit: Adaptive Red-Teaming of Large Language Models via Search,
Reasoning, and Preference Optimization

Anonymous ACL submission

Abstract

Red-teaming has become a critical compo-
nent of Large Language Models (LLMs) secu-
rity amid increasingly sophisticated adversarial
techniques. However, existing methods often
depend on hard-coded strategies that quickly
become obsolete against novel attack patterns,
requiring constant updates. Moreover, current
automated red-teaming approaches typically
lack effective reasoning capabilities, leading
to lower attack success rates and longer train-
ing times. In this paper, we propose RedHit,
a multi-round, automated, and adaptive red-
teaming framework that integrates Monte Carlo
Tree Search (MCTS), Chain-of-Thought (CoT)
reasoning, and Direct Preference Optimiza-
tion (DPO) to enhance the adversarial capabili-
ties of an Adversarial LLM (ALLM). RedHit
formulates prompt injection as a tree search
problem, where the goal is to discover ad-
versarial prompts capable of bypassing target
model defenses. Each search step is guided
by an Evaluator module that dynamically
scores model responses using multi-detector
feedback, yielding fine-grained reward signals.
MCTS is employed to explore the space of ad-
versarial prompts, incrementally constructing
a Prompt Search Tree (PST) in which each
node contains an adversarial prompt, its re-
sponse, a reward, and other control proper-
ties. Prompts are generated via a locally hosted
IndirectPromptGenerator module, which
uses CoT-enabled prompt transformation to cre-
ate multi-perspective, semantically equivalent
variants for deeper tree exploration. CoT rea-
soning improves MCTS exploration by inject-
ing strategic insights derived from past inter-
actions, enabling RedHit to adapt dynamically
to the target LLM’s defenses. Simultaneously,
DPO fine-tunes the ALLM using preference
data gathered from prior attack rounds, progres-
sively enhancing its ability to generate more
effective prompts. RedHit leverages the Garak
framework to evaluate each adversarial prompt
and compute rewards, demonstrating robust

and)adaptive adversarial behavior across multi-
ple attack rounds.

1 Introduction

LLMs''such as GPT-4 and LLaMA have demon-
strated remarkable capabilities in understanding
and generating coherent, context-aware text across
a wide array of applications, including machine
translation, summarization, code generation, and
conversational agents (??). These models have
shown human-like fluency and reasoning capabili-
ties, enabling them to power both commercial and
open-source Al systems. However, their growing
capabilities come with an expanding set of safety
and security challenges (?). LLMs are susceptible
to producing unsafe content, disclosing sensitive in-
formation, or being manipulated through adversar-
ial prompts—raising substantial concerns around
trust, safety, and deployment in real-world scenar-
ios (??). One prominent threat to LLM safety is
the phenomenon of prompt injection attacks, in
which adversarial users craft input sequences to
circumyent safety filters, jailbreak models, or elicit
harmful, biased, or restricted outputs. As LLMs
are increasingly integrated into search engines, pro-
ductivity tools, customer service bots, and decision-
supportsystems, the impact of such attacks grows
significantly. For example, attackers may exploit
LLMs to bypass content moderation, extract pri-
vate training data, or subtly manipulate the model’s
behavior in multi-turn dialogues. These vulnerabil-
ities are-not merely theoretical; several real-world
instances of prompt injection and model misuse
have already been documented (??).

To identify and mitigate such vulnerabilities dur-
ing development, red-teaming has emerged as a
core strategy. Red-teaming involves simulating ad-
versarial behavior by designing malicious or prob-
ing inputs to test how models respond under unsafe
or manipulative conditions. Traditionally, this has
been performed manually by expert annotators or



security researchers who craft edge-case prompts
and evaluate outputs for policy violations or harm
(??). While this approach is invaluable, it is inher-
ently resource-intensive, requiring extensive time,
domain expertise, and iteration to explore the high-
dimensional space of adversarial behaviors effec-
tively. Manual red-teaming suffers from several key
limitations. First, it does not scale well. The ever-
growing range of use cases and the rapid evolution
of LLMs have made the space of potential vulnera-
bilities vast and constantly shifting. Relying solely
on human experts to explore this space leads to bot-
tlenecks. Second, human-crafted attacks may fall
behind the sophistication of both LL.Ms and their
defense mechanisms. Third, human evaluators in-
troduce subjectivity, inconsistency, and potential
oversight, especially when assessing nuanced harm-
ful outputs.

To address these challenges, automated red-
teaming has been proposed as a promising alter-
native. One stream of research trains reward mod-
els that approximate human judgment, enabling
large-scale preference modeling and automated
scoring of model outputs (??). These models help
reduce reliance on human annotators for output
evaluation. However, generating high-quality ad-
versarial prompts—especially ones that adapt to
model defenses—still largely depends on human
creativity and intuition. Recent works have ex-
plored automated systems that use language mod-
els themselves to generate adversarial prompts. For
example, some approaches fine-tune models to
behave as adversarial agents, iteratively optimiz-
ing prompts to maximize unsafe completions (??).
However, these systems often suffer from brittle-
ness, overfitting to specific targets, or poor general-
ization across different LLMs. Furthermore, they
frequently lack strategic reasoning and adaptabil-
ity, making them ineffective at discovering newly
emerging failure modes.

A critical limitation in existing automated red-
teaming frameworks is their use of static or greedy
generation strategies. These systems typically lack
mechanisms for exploration and strategic refine-
ment. As a result, they may become stuck in sub-
optimal attack patterns and fail to uncover subtle
or novel vulnerabilities. Moreover, most frame-
works do not incorporate learning from feedback in
a structured and long-term way—each generation
is treated independently, without memory of past
successes or failures.

To bridge these gaps, we propose RedHit, a

novel framework for progressive, automated, and
adaptive red-teaming of LLMs. RedHit intro-
duces@synergistic integration of three core compo-
nents:0MCTS, CoT reasoning, and DPO. Together,
these techniques enable RedHit to generate high-
qualityradversarial prompts that evolve over mul-
tiple rounds, guided by both strategic exploration
and preference feedback. At the heart of RedHit is
the formulation of prompt injection as a tree search
problem:. Each node in the search tree represents
a candidate adversarial prompt, its corresponding
modelresponse, a reward (evaluated via an exter-
nal reward model), and relevant metadata. Red-
Hit uses-a configurable MCTreeSearch module that
controlsisearch depth, iteration count, and branch-
ing breadth to systematically expand the prompt
searchspace. The model responses are evaluated
by an'Evaluator module that aggregates multi-
detectoriresults to compute a fine-grained reward
signalloAdversarial prompts are generated using
the IndirectPromptGenerator, a locally hosted
Chain-of-Thought-based rewriter that transforms
prompts: into strategically deceptive alternatives,
boosting the diversity and stealth of attacks.

To futther enhance the strategic depth of MCTS,
we incorporate Chain-of-Thought reasoning dur-
ing prompt generation. CoT provides intermedi-
ate reasoning steps, helping the ALLM generate
prompts' that are not only more coherent but also
more tactically sound. This improves the likeli-
hood ofsuccessfully bypassing target defenses and
allows 'the model to reflect on past attack paths
to refine future ones (?). Finally, RedHit employs
DPO to continuously fine-tune the adversarial LLM
based'on feedback from previous attack rounds.
Unlike’supervised fine-tuning, which requires la-
beled ‘data, DPO directly optimizes the model’s
parameters to prefer high-reward prompts over low-
reward”ones, using the output evaluations from
each tree traversal (?). This iterative learning en-
ables the ALLM to become progressively better
at generating effective adversarial prompts tailored
to thelevolving defenses of the target LLM. Our
main ¢ontributions are summarized as follows:

¢ Weiintroduce RedHit, a novel automated red-
teaming framework that integrates MCT, CoT
reasoning, and DPO to progressively gener-
ateradaptive adversarial prompts. RedHit is
implemented using a modular design that sup-
ports local LLMs and is fully integrated with
the’DSPy framework.



* Prompt injection is formulated as a tree search
problem, and a PST is constructed where
each node encodes an adversarial prompt,
model response, reward, and auxiliary meta-
data—enabling efficient exploration and learn-
ing. Prompt exploration is driven by a con-
figurable MCTreeSearch module that sup-
ports depth-controlled, breadth-aware, reward-
guided rollouts.

e CoT reasoning is embedded within
MCTS rollouts to guide strategic and
context-aware  adversarial ~ generation
paths. Prompts are rewritten using a local
IndirectPromptGenerator that produces
semantically aligned but more evasive
versions of the base prompt using CoT-based
transformations.

* We implement a continual preference-based
fine-tuning loop using DPO, allowing the ad-
versarial LLM to improve its effectiveness
over multiple attack rounds.

* We evaluate RedHit using the Garak frame-
work and demonstrate that it achieves higher
attack success rates, broader coverage of vul-
nerabilities, and stronger adaptability com-
pared to existing baselines. A dedicated
Evaluator module aggregates the outcomes
of multiple detectors to compute fine-grained
reward scores, enabling more precise learning
signals.

The remainder of this paper is organized as fol-
lows. Section 2 reviews recent advances in auto-
mated red-teaming and adversarial prompt gener-
ation for LLMs. Section 3 introduces the RedHit
framework in detail, describing the integration of
MCTS, CoT reasoning, and DPO. Section 4 out-
lines our experimental setup, evaluation metrics,
and our baseline, followed by extensive empirical
results. We also conduct an ablation study to iso-
late the contributions of each core module. Finally,
Section S concludes with a summary of our find-
ings and discusses promising future directions for
adaptive and scalable LLM red-teaming research.

2 Related Work

The growing capabilities of LLMs have amplified
the need to rigorously evaluate their robustness
against misuse and adversarial exploitation. Early

efforts in this space primarily relied on manual red-
teaming, where human annotators craft prompts to
probe model vulnerabilities (??). While valuable,
this approach is inherently limited by scalability,
subjectivity, and cost, often requiring large annota-
tion teams to identify unsafe behavior through ex-
tensivectrial-and-error. To mitigate the inefficiency
of human evaluation, reward models trained on hu-
man preferences have been introduced to automate
the assessment of model responses (??). These
models’approximate human judgment and provide
feedback signals for fine-tuning, enabling scalable
learning from preferences. However, the genera-
tion of'high-quality adversarial prompts remains
predominantly human-driven, limiting the overall
scalability of red-teaming pipelines.

In reésponse, recent work has explored the use of
language models themselves to generate adversar-
ial prompts. For instance, ? introduced a frame-
work that trains adversarial LLMs to red-team other
models,' demonstrating the feasibility of LLMs as
both attackers and defenders. However, these ap-
proaches often rely on static attack strategies or
fine-tuned behaviors that do not generalize well
across evolving LLMs. As target models improve,
adversarial agents must also dynamically adapt
to more sophisticated and subtle defense mecha-
nisms. To address the challenge of evolving vul-
nerabilities, ? proposed leveraging GPT-based ad-
versaries to automatically jailbreak models. Their
findings highlight the potential of autoregressive
LLMs to discover and exploit security flaws, yet
also reveal the brittleness of such systems when
deployed in multi-turn or adaptive contexts. Sim-
ilarly, ? introduced MART, a hybrid framework
that combines automated adversarial prompt gen-
eration with safe response modeling to enhance ro-
bustness and adaptability in red-teaming pipelines.
Other methods like JailbreakBench and Prompt-
Bench have also aimed to standardize red-teaming
evaluations, though they typically lack iterative rea-
soning or self-improving feedback loops. Despite
these advances, existing automated red-teaming
frameworks often suffer from several limitations.
Many_adopt single-step or greedy strategies that
fail to account for long-term planning or strategic
exploration. Additionally, few systems integrate
structured feedback mechanisms to continuously
improve adversarial capabilities over time. More-
over, most prior work underutilizes search-based
optimization and reasoning-enhanced generation,
both of:which are critical for uncovering subtle



or evasive vulnerabilities. A fully automated and
adaptive red-teaming framework must be capable
of both uncovering current vulnerabilities and antic-
ipating emergent failure patterns through iterative
interaction.

To bridge these gaps, we propose RedHit, a
multi-round, progressive, and adaptive red-teaming
framework. RedHit combines MCTS (?), CoT rea-
soning (?), and DPO (?) to construct an ALLM
capable of dynamically generating increasingly ef-
fective attack prompts. The framework formulates
prompt injection as a tree search problem, where
MCTS guides the exploration of adversarial paths,
CoT enhances strategic reasoning during prompt
generation, and DPO fine-tunes the ALLM based
on feedback from prior attacks. Unlike earlier ap-
proaches, RedHit maintains a Prompt Search Tree
across rounds, allowing it to retain memory of prior
attempts, adapt search directions, and improve
long-term attack efficacy. Through this integra-
tion, RedHit moves beyond static prompt crafting
or single-step adversarial generation. It constructs
a PST, where each node contains an adversarial
prompt, corresponding model response, reward
(measured via an external evaluation framework
such as Garak), and control metadata. This de-
sign allows RedHit to support dynamic exploration,
structured optimization, and CoT-guided reasoning
in a unified, automated red-teaming pipeline.

3 Proposed Method

RedHit is an automated and multi-round red-
teaming framework designed to uncover vulner-
abilities in target large language models (TLLMs)
through adaptive adversarial prompt generation. It
treats prompt injection as a structured exploration
problem, constructing a dynamic PST where nodes
represent prompts, responses, and reward scores.
Figure ?? illustrates the overall RedHit workflow.
The ALLM generates CoT-guided prompt can-
didates, which are evaluated against the TLLM.
The resulting responses are scored via an exter-
nal evaluation framework, and high-performing
prompts are retained in the PST for policy refine-
ment. This closed-loop architecture—driven by
MCTS-based exploration, CoT-based prompt gen-
eration, and reward-guided optimization—enables
RedHit to progressively adapt and improve over
multiple attack rounds. Let 7LLM denote the
target LLM under audit, and ALLM be an adver-
sarial LLM capable of generating attack prompts.

At eachitime step ¢, the adversary generates a can-
didateiprompt x; using its current policy. The
promptis submitted to 7 LLM, producing a re-
sponse’ry = T LLM(z), which is scored by a
rewardfunction s; = Reward(z;, ;) computed via
an external framework (e.g., Garak). The goal is
to iteratively improve ALLM such that it maxi-
mizes:the expected cumulative reward ) _, s, cor-
responding to the generation of increasingly effec-
tive adversarial prompts. The overall process is
summarized in Algorithm ??, which outlines Red-
Hit’s multi-round exploration and optimization pro-
cedurecacross search, evaluation, and preference-
driven:fine-tuning.

Algorithm 1 RedHit Framework

Require: ,Target LLM 7 LLM, adversarial LLM ALLM,
reward model R (e.g., Garak), number of rounds NN, roll-
out’budget B

1: Initialize Prompt Search Tree 7 with root node and empty
result buffer
2: for: =1to N do
{Attack rounds}

3: forj=1toBdo
{Tree rollouts }
4: Select node n in 7 using UCB traversal policy
5: Retrieve base prompt 2" from node n
6: Generate CoT reasoning trace 7; using ALLM
7: Generate prompt set {z},...,z}"} from 7; using
IndirectPromptGenerator
8: for each prompt :c]f do
9: Query TLLM to get response rf =
TLLM(z})
10: Evaluate reward s¥ = R(z},r}) via
Evaluator
11: Expand 7 by adding node (%, 7, s%) under n
12: Store (z¥, 7%, s¥) in result buffer
13: end for
14:  end for
15: Construct preference pairs from result buffer

16: Fine-tune IndirectPromptGenerator using DPO

17:  Clear result buffer

18: end for

19: return Top-k adversarial prompts from 7 ranked by
reward

3.1 Tree-based Prompt Exploration with CoT
Guidance

RedHitemploys Monte Carlo Tree Search (MCTYS)
as its core search mechanism to explore the space
of adversarial prompts. Each node in the PST
storesza‘tuple (x,r, s), representing the adversar-
ial prompt, the response from 7LLM, and the
resulting reward. The MCTS algorithm balances
exploration and exploitation using the Upper Confi-
denceBound (UCB) criterion to traverse promising
branches. The tree search is implemented via a
configurable MCTreeSearch class that supports it-



Selection

Select current node's W

prompt and pass it to the
targeted LLM J

p
Initialize the current node Get th first
node using the first prompt| prompt

.
select one children using
selected policy and consider select random policy ]

it as current node

Does
0®0 current
node have

children?

| Generate response |
o /

Does attack

Evaluate the response
P succeed ?

Simulation

select UTC policy

Given the history of
current iteration generate
N adversarial prompt and

set them as the current
nod children /

Expansion
e N
Update the reward of current
node and its parent nodes
Backpropagation

Figure 1: Overview of the RedHit framework. An ALLM explores adversarial prompt space through MCTS,
guided by CoT reasoning and iteratively fine-tuned using DPO. The PST encodes prompt-response-reward tuples,

evaluated by the Garak framework.

erative rollouts with adjustable depth, breadth, and
final expansion rounds. Prompt generation is han-
dled by the IndirectPromptGenerator, which
wraps a locally hosted DSPy program that trans-
forms a base prompt into multiple indirect ad-
versarial variants using Chain-of-Thought reason-
ing. These reworded prompts form the candidate
branches during tree expansion. Each prompt is
executed using the target LLM through a stan-
dard interface, and the response is passed into an
Evaluator module. This evaluator aggregates the
detection results from multiple detectors and nor-
malizes the score over the number of generations
and detectors, yielding a soft reward signal. This
fine-grained reward is critical for driving effective
policy updates and deeper exploration. The evalua-
tor is automatically initialized per probe within the
ProbeWrapper, enabling seamless integration into
the red-teaming loop.

3.2 Reward-driven Optimization and Policy
Refinement

Following each attack round, RedHit uses the accu-
mulated interactions to construct preference pairs
from the PST. These are used to fine-tune ALLM
via DPO, aligning the adversary’s generation policy
to favor high-reward prompts. After each round,

high-reward outputs are stored and sampled for
continued learning or offline optimization. This
allows:itraining to persist across multiple execution
sessions: By iteratively refining the adversarial pol-
icy through structured exploration (MCTS), CoT,
and preference-based optimization (DPO), RedHit
overcomes the limitations of static or brittle red-
teaming strategies. It adapts to increasingly robust
defenses in 7 LLM, discovers both common and
subtle:vulnerabilities, and supports diverse, high-
rewardradversarial strategies across multiple inter-
action:rounds. Unlike prior frameworks, RedHit
supportsilocal model hosting, reasoning-driven gen-
eration; and modular policy training—all within a
scalablerand extensible DSPy-based environment.

3.3 Reward Formulation

To apply Monte Carlo Tree Search (MCTS), we
need to define a reward function to learn a policy
through an iterative process. MCTS updates the
rewards of tree nodes during the backpropagation
step, which is executed after each simulation. To
compute the rewards, we used Garak’s detector,
which:generates multiple responses using 7 LLM
for eachr generation and determines whether each
response passes the test. Accordingly, we define
the reward for each node as the proportion of suc-



cessful prompt injections among the generated re-
sponses:

Zregn 5(7")
|Gnl
where G,, denotes the set of responses generated
atnode n, and §(r) = 1 if the response 7 is flagged
as a successful injection by the detector, and 0
otherwise.

R(n) =

4 Experimental Evaluation

To evaluate the effectiveness of the RedHit frame-
work, we conduct a comprehensive set of ex-
periments across multiple large language models
(LLMs). The adaptability of RedHit allows us to
apply it to all target LLMs using a variety of prompt
injection strategies. In this section, we present our
evaluation methodology, describe the experimental
setup, and analyze the results to assess RedHit’s
performance and robustness compared to existing
approaches.

4.1 Experimental Setup

We evaluate RedHit against original and distilled
version state-of-the-art LLLMs serving as target
models (7 LLM),including:

* LLaMA 3 (?)

¢ Gamma-3 (?)

Mistral7B (?)
* DeepSeek-R1-Distill-Qwen-7B (?)
¢ Phi-4 (?)

?? demonstrates the details of LLMs we used
for evaluate our proposed method.

The adversarial agent ALLM is initial-
ized using 4-bit quantized LLaMA3 8B model
and interacts with the target model through
multi-round attacks. Prompt generation is
performed using a Chain-of-Thought-enabled
IndirectPromptGenerator, which rephrases
prompts into more evasive variants during MCTS
exploration. Model responses are scored using a
custom Evaluator class that aggregates the out-
puts of multiple detectors implemented within the
Garak framework (?). All experiments are con-
ducted offline within a modular, reproducible en-
vironment using RedHit’s local execution pipeline.
RedHit runs for N = 100 attack rounds, with a
rollout budget B = 5 per round, and each prompt

tree isiexpanded up to a configurable depth. We
ran RedHit on a 24GB NVIDIA A30 GPU that
hosted ALLM via the VLLM framework, and we
also applied 4-bit quantization to ALLM using
the bitsandbytes library.

4.2 Evaluation Metrics

The Attack Success Rate (ASR) metric is used to
evaluate the effectiveness of RedHit’s adversarial
prompts. ASR is defined as the percentage of gener-
ated responses that violate policy due to successful
prompt injection. Since Garak generates a spe-
cific number of responses (by default, 5) for each
harmful prompt, we applied a slight modification
to enable a more comprehensive evaluation of our
proposed method. In our approach, an attack is
considered successful for a given prompt if the
proportion of successful attack responses meets or
exceeds. a specified threshold (default: 0.5). We
modified the default settings by changing the num-
ber of generations to 6 and ran RedHit across 10
thresholds ranging from 0.1 to 1.0.

ASR = Dueces €8]
total
where, Nguccess 1S the number of successful attacks
and Ny 1s the total number of prompts issued.

4.3 Evaluation Results

In the following sections, we present and analyze
the evaluation results of the proposed methods. A
thorough examination is conducted to assess the
performance of our approach, supported by de-
tailed discussion and visualizations.

4.3.1 , Threshold-Based Evaluation of ALLM

Since the MCTS reward ranges from 0.0 to 1.0, we
use it as-a threshold to determine when a generated
prompt:is considered a successful prompt injection.
We evaluate our proposed method across 10 thresh-
old levels, from 0.1 to 1.0. A threshold of 1.0 indi-
cates that a prompt injection is considered success-
ful onlydf all six responses from the target LLM are
successfully affected by the ALLM prompt. ??
shows:the result of our custom threshold-based ex-
priments.

4.4 Comparison Results

To contextualize the performance of RedHit, we
compare RedHit against the Garak framework,
whichisileading and highly significant red-teaming
framework. Garak is a widely used baseline for



Table 1: Model Specifications

Model Architecture Parameters Context Embedding Quantization
Length Length
DeepSeek-R1  gqwen2 7.6B 131072 3584 Q4_K_M
llama3 llama 8.0B 8192 4096 Q4.0
gemma3 gemma3 4.3B 131072 2560 Q4_K_M
mistral llama 7.2B 32768 4096 Q4_0
phi4 phi3 14.7B 16384 5120 Q4_K M
Accuracy = Threshold Counts per LLM 100 Garak’s ASR Across Different Models
1001 & 87.4%
90+ 80
% a0 o g
g £ 60
E 704 é 47.4%
:‘g 60 % a0 39.1%
E g 33.4% 32.8%
v 501
-;2 401 ~-e |LaMA3 \\ 20
2 Phi-4 N (IR .
30| —* Mistral i _'\\ .
--- DeepSeek-R1 "\, LLaMA3 Phi4 Mistral-78 DeepSeek-R1 Gemma3
204 —*— Gemma-3 \3._,_,_.
02 0.4 06 08 10

Threshold

Figure 2: This figure illustrates the number of model
outputs that exceed increasing accuracy thresholds (0.1
to 1.0) for five different LLMs. It highlights how perfor-
mance declines as stricter confidence levels are applied,
offering a comparative view of each model’s robustness
under higher accuracy demands.

evaluating adversarial prompts targeting LLMs. It
attempts to bypass safety filters through automati-
cally generated injections. This comparison helps
highlight the effectiveness and reliability of our
proposed approach. In this experiment, we gener-
ate 100 malicious prompts using the ALLM after
training phase and then replaced these prompt with
the Garak attempt prompt. ?? show the perfor-
mance of Garak across different models while ??
show the RedHit performance.

When comparing Garak and Redhit across the
same set of models, the differences in ASR high-
light Redhit’s consistent performance. Redhit out-
performs Garak by a 20.7% difference on LLaMA3,
a 1.65% difference on Mistral-7B, and a 15.6%
difference on DeepSeek-R1. Additionally, Redhit
shows a 4.35% improvement over Garak on Phi4.
While Redhit has a 12.2% lower ASR on Gemma3,
indicating Garak’s better performance on more vul-
nerable models, the overall trends demonstrate that
Redhit provides a more nuanced and precise eval-

Figure 3: This chart illustrates the ASR of Garak across
different language models. The results indicate that
Gemma 3 is significantly more vulnerable to adversarial
prompt injections compared to the other models, achiev-
ing an ASR of 87.4%.

vation. The method’s targeted approach proves
particularly effective against models designed to
resist basic adversarial attacks. Overall, Redhit’s
ability; to consistently achieve competitive or supe-
rior results across various models emphasizes its
value as-a reliable and refined red-teaming tool.

5 Conclusion

We presented RedHit, a fully automated and adap-
tive red-teaming framework that leverages MCTS,
CoT reasoning, and DPO to iteratively generate
high-quality adversarial prompts. RedHit treats
prompt injection as a structured search problem,
systematically exploring and expanding a prompt
searchiitree while refining its generation policy
throughspreference-based optimization. Our im-
plementation integrates reasoning-driven prompt
rewording, multi-detector evaluation, and modular
fine-tuning, enabling RedHit to adapt over rounds
and uncover both common and subtle vulnerabil-
ities. ‘Bxperimental evaluations compare RedHit
against'strong baselines, with ablations confirm-
ing the’contribution of each component. Results
demonstrate superior attack success, diversity, and



RedHit's ASR Across Different Models
100

75.2%

59.8%

49.0% 48.4%

40 37.8%

Attack Success Rate (%)

Figure 4: Redhit shows superior performance on
LLaMA3, Mistral-7B, DeepSeek-R1, and Phi4. These
results highlight its effectiveness across multiple mod-

els.

efficiency. RedHit advances scalable LLM auditing
and offers a blueprint for combining search, reason-
ing, and learning in adversarial generation. Future
work will explore multi-agent extensions, domain-
specific reasoning, and integration with defenses to
support closed-loop safety evaluation.

References

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell J] Hewett, Mojan Javaheripi, Piero
Kauffmann, and 1 others. 2024. Phi-4 technical re-
port. arXiv preprint arXiv:2412.08905.

Yuntao Bai, Saurav Kadavath, and 1 others. 2022. Train-
ing a helpful and harmless assistant with reinforce-
ment learning from human feedback. arXiv preprint
arXiv:2204.05862.

Cameron B Browne, Edward Powley, and 1 others. 2012.
A survey of monte carlo tree search methods. IEEE
Transactions on Computational Intelligence and Al

in Games, 4(1):1-43.

Shuyang Chen, Zhe Sun, and 1 others. 2023. Mart:
Improving the robustness of language models via
multi-turn adversarial training. arXiv preprint
arXiv:2310.01931.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Bastian Greshake Tzovaras and 1 others. 2023. Does
gpt-4 pass the red team test? harnessing llms

for automatic prompt injection. arXiv preprint
arXiv:2304.13709.

Xiaodong Gu, Meng Chen, Yalan Lin, Yuhan Hu,
Hongyu Zhang, Chengcheng Wan, Zhao Wei, Yong

Xu, and Juhong Wang. 2025. On the effectiveness of
large language models in domain-specific code gen-

eration. ACM Transactions on Software Engineering
and Methodology, 34(3):1-22.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-rl: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

OpenAl. 2023. Gpt-4 technical report. OpenAl Techni-
cal Report.

Long Quyang, Jeffrey Wu, and 1 others. 2022. Training
language models to follow instructions with human
feedback. arXiv preprint arXiv:2203.02155.

Ethan Perez, Kyle Yu, and 1 others. 2022. Red team-
ing language models with language models. arXiv
preprint arXiv:2202.03286.

Rafael Rafailov, Yining Zhou, and 1 others. 2023.
Direct, preference optimization: Your language
model is secretly a reward model. arXiv preprint
arXiv:2305.18290.

M. Ranta and 1 others. 2023. Garak: A framework for
automated red-teaming of language models. https:
//github.com/leondz/garak.

Robert'Shelby, Carl Vondrick, and 1 others. 2023. Can
Ilms be safely released? evaluating the impact of red
teaming on language model behavior. arXiv preprint
arXiv:2304.10685.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya
Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin,
Tatiana Matejovicova, Alexandre Ramé, Morgane
Riviere, and 1 others. 2025. Gemma 3 technical
report, arXiv preprint arXiv:2503.19786.

Hugo Touvron, Thibaut Lavril, and 1 others. 2023.
Llama 2: Open foundation and fine-tuned chat mod-
els. arXiv preprint arXiv:2307.09288.

Jason Wei, Xuezhi Wang, and 1 others. 2022. Chain-of-
thought prompting elicits reasoning in large language
models. arXiv preprint arXiv:2201.11903.

Laura Weidinger, Jonathan Uesato, Jack Rae, and 1
others: 2021. Ethical and social risks of harm from
language models. arXiv preprint arXiv:2112.04359.


https://arxiv.org/abs/2310.06825
https://cdn.openai.com/papers/gpt-4.pdf
https://github.com/leondz/garak
https://github.com/leondz/garak
https://github.com/leondz/garak

Laura Weidinger, Jonathan Uesato, Maribeth Rauh,
Conor Griffin, Po-Sen Huang, John Mellor, Amelia
Glaese, Myra Cheng, Borja Balle, Atoosa Kasirzadeh,
and 1 others. 2022. Taxonomy of risks posed by lan-
guage models. In Proceedings of the 2022 ACM con-

ference on fairness, accountability, and transparency,
pages 214-229.

Andy Zou, James Zou, and 1 others. 2023. Univer-
sal and transferable adversarial attacks on aligned
language models. arXiv preprint arXiv:2307.15043.



