
RedHit: Adaptive Red-Teaming of Large Language Models via Search,
Reasoning, and Preference Optimization

Anonymous ACL submission

Abstract 001

Red-teaming has become a critical compo- 002
nent of Large Language Models (LLMs) secu- 003
rity amid increasingly sophisticated adversarial 004
techniques. However, existing methods often 005
depend on hard-coded strategies that quickly 006
become obsolete against novel attack patterns, 007
requiring constant updates. Moreover, current 008
automated red-teaming approaches typically 009
lack effective reasoning capabilities, leading 010
to lower attack success rates and longer train- 011
ing times. In this paper, we propose RedHit, 012
a multi-round, automated, and adaptive red- 013
teaming framework that integrates Monte Carlo 014
Tree Search (MCTS), Chain-of-Thought (CoT) 015
reasoning, and Direct Preference Optimiza- 016
tion (DPO) to enhance the adversarial capabili- 017
ties of an Adversarial LLM (ALLM). RedHit 018
formulates prompt injection as a tree search 019
problem, where the goal is to discover ad- 020
versarial prompts capable of bypassing target 021
model defenses. Each search step is guided 022
by an Evaluator module that dynamically 023
scores model responses using multi-detector 024
feedback, yielding fine-grained reward signals. 025
MCTS is employed to explore the space of ad- 026
versarial prompts, incrementally constructing 027
a Prompt Search Tree (PST) in which each 028
node contains an adversarial prompt, its re- 029
sponse, a reward, and other control proper- 030
ties. Prompts are generated via a locally hosted 031
IndirectPromptGenerator module, which 032
uses CoT-enabled prompt transformation to cre- 033
ate multi-perspective, semantically equivalent 034
variants for deeper tree exploration. CoT rea- 035
soning improves MCTS exploration by inject- 036
ing strategic insights derived from past inter- 037
actions, enabling RedHit to adapt dynamically 038
to the target LLM’s defenses. Simultaneously, 039
DPO fine-tunes the ALLM using preference 040
data gathered from prior attack rounds, progres- 041
sively enhancing its ability to generate more 042
effective prompts. RedHit leverages the Garak 043
framework to evaluate each adversarial prompt 044
and compute rewards, demonstrating robust 045

and adaptive adversarial behavior across multi- 046
ple attack rounds. 047

1 Introduction 048

LLMs such as GPT-4 and LLaMA have demon- 049

strated remarkable capabilities in understanding 050

and generating coherent, context-aware text across 051

a wide array of applications, including machine 052

translation, summarization, code generation, and 053

conversational agents (??). These models have 054

shown human-like fluency and reasoning capabili- 055

ties, enabling them to power both commercial and 056

open-source AI systems. However, their growing 057

capabilities come with an expanding set of safety 058

and security challenges (?). LLMs are susceptible 059

to producing unsafe content, disclosing sensitive in- 060

formation, or being manipulated through adversar- 061

ial prompts—raising substantial concerns around 062

trust, safety, and deployment in real-world scenar- 063

ios (??). One prominent threat to LLM safety is 064

the phenomenon of prompt injection attacks, in 065

which adversarial users craft input sequences to 066

circumvent safety filters, jailbreak models, or elicit 067

harmful, biased, or restricted outputs. As LLMs 068

are increasingly integrated into search engines, pro- 069

ductivity tools, customer service bots, and decision- 070

support systems, the impact of such attacks grows 071

significantly. For example, attackers may exploit 072

LLMs to bypass content moderation, extract pri- 073

vate training data, or subtly manipulate the model’s 074

behavior in multi-turn dialogues. These vulnerabil- 075

ities are not merely theoretical; several real-world 076

instances of prompt injection and model misuse 077

have already been documented (??). 078

To identify and mitigate such vulnerabilities dur- 079

ing development, red-teaming has emerged as a 080

core strategy. Red-teaming involves simulating ad- 081

versarial behavior by designing malicious or prob- 082

ing inputs to test how models respond under unsafe 083

or manipulative conditions. Traditionally, this has 084

been performed manually by expert annotators or 085

1

security researchers who craft edge-case prompts 086

and evaluate outputs for policy violations or harm 087

(??). While this approach is invaluable, it is inher- 088

ently resource-intensive, requiring extensive time, 089

domain expertise, and iteration to explore the high- 090

dimensional space of adversarial behaviors effec- 091

tively. Manual red-teaming suffers from several key 092

limitations. First, it does not scale well. The ever- 093

growing range of use cases and the rapid evolution 094

of LLMs have made the space of potential vulnera- 095

bilities vast and constantly shifting. Relying solely 096

on human experts to explore this space leads to bot- 097

tlenecks. Second, human-crafted attacks may fall 098

behind the sophistication of both LLMs and their 099

defense mechanisms. Third, human evaluators in- 100

troduce subjectivity, inconsistency, and potential 101

oversight, especially when assessing nuanced harm- 102

ful outputs. 103

To address these challenges, automated red- 104

teaming has been proposed as a promising alter- 105

native. One stream of research trains reward mod- 106

els that approximate human judgment, enabling 107

large-scale preference modeling and automated 108

scoring of model outputs (??). These models help 109

reduce reliance on human annotators for output 110

evaluation. However, generating high-quality ad- 111

versarial prompts—especially ones that adapt to 112

model defenses—still largely depends on human 113

creativity and intuition. Recent works have ex- 114

plored automated systems that use language mod- 115

els themselves to generate adversarial prompts. For 116

example, some approaches fine-tune models to 117

behave as adversarial agents, iteratively optimiz- 118

ing prompts to maximize unsafe completions (??). 119

However, these systems often suffer from brittle- 120

ness, overfitting to specific targets, or poor general- 121

ization across different LLMs. Furthermore, they 122

frequently lack strategic reasoning and adaptabil- 123

ity, making them ineffective at discovering newly 124

emerging failure modes. 125

A critical limitation in existing automated red- 126

teaming frameworks is their use of static or greedy 127

generation strategies. These systems typically lack 128

mechanisms for exploration and strategic refine- 129

ment. As a result, they may become stuck in sub- 130

optimal attack patterns and fail to uncover subtle 131

or novel vulnerabilities. Moreover, most frame- 132

works do not incorporate learning from feedback in 133

a structured and long-term way—each generation 134

is treated independently, without memory of past 135

successes or failures. 136

To bridge these gaps, we propose RedHit, a 137

novel framework for progressive, automated, and 138

adaptive red-teaming of LLMs. RedHit intro- 139

duces a synergistic integration of three core compo- 140

nents: MCTS, CoT reasoning, and DPO. Together, 141

these techniques enable RedHit to generate high- 142

quality adversarial prompts that evolve over mul- 143

tiple rounds, guided by both strategic exploration 144

and preference feedback. At the heart of RedHit is 145

the formulation of prompt injection as a tree search 146

problem. Each node in the search tree represents 147

a candidate adversarial prompt, its corresponding 148

model response, a reward (evaluated via an exter- 149

nal reward model), and relevant metadata. Red- 150

Hit uses a configurable MCTreeSearch module that 151

controls search depth, iteration count, and branch- 152

ing breadth to systematically expand the prompt 153

search space. The model responses are evaluated 154

by an Evaluator module that aggregates multi- 155

detector results to compute a fine-grained reward 156

signal. Adversarial prompts are generated using 157

the IndirectPromptGenerator, a locally hosted 158

Chain-of-Thought-based rewriter that transforms 159

prompts into strategically deceptive alternatives, 160

boosting the diversity and stealth of attacks. 161

To further enhance the strategic depth of MCTS, 162

we incorporate Chain-of-Thought reasoning dur- 163

ing prompt generation. CoT provides intermedi- 164

ate reasoning steps, helping the ALLM generate 165

prompts that are not only more coherent but also 166

more tactically sound. This improves the likeli- 167

hood of successfully bypassing target defenses and 168

allows the model to reflect on past attack paths 169

to refine future ones (?). Finally, RedHit employs 170

DPO to continuously fine-tune the adversarial LLM 171

based on feedback from previous attack rounds. 172

Unlike supervised fine-tuning, which requires la- 173

beled data, DPO directly optimizes the model’s 174

parameters to prefer high-reward prompts over low- 175

reward ones, using the output evaluations from 176

each tree traversal (?). This iterative learning en- 177

ables the ALLM to become progressively better 178

at generating effective adversarial prompts tailored 179

to the evolving defenses of the target LLM. Our 180

main contributions are summarized as follows: 181

• We introduce RedHit, a novel automated red- 182

teaming framework that integrates MCT, CoT 183

reasoning, and DPO to progressively gener- 184

ate adaptive adversarial prompts. RedHit is 185

implemented using a modular design that sup- 186

ports local LLMs and is fully integrated with 187

the DSPy framework. 188

2

• Prompt injection is formulated as a tree search 189

problem, and a PST is constructed where 190

each node encodes an adversarial prompt, 191

model response, reward, and auxiliary meta- 192

data—enabling efficient exploration and learn- 193

ing. Prompt exploration is driven by a con- 194

figurable MCTreeSearch module that sup- 195

ports depth-controlled, breadth-aware, reward- 196

guided rollouts. 197

• CoT reasoning is embedded within 198

MCTS rollouts to guide strategic and 199

context-aware adversarial generation 200

paths. Prompts are rewritten using a local 201

IndirectPromptGenerator that produces 202

semantically aligned but more evasive 203

versions of the base prompt using CoT-based 204

transformations. 205

• We implement a continual preference-based 206

fine-tuning loop using DPO, allowing the ad- 207

versarial LLM to improve its effectiveness 208

over multiple attack rounds. 209

• We evaluate RedHit using the Garak frame- 210

work and demonstrate that it achieves higher 211

attack success rates, broader coverage of vul- 212

nerabilities, and stronger adaptability com- 213

pared to existing baselines. A dedicated 214

Evaluator module aggregates the outcomes 215

of multiple detectors to compute fine-grained 216

reward scores, enabling more precise learning 217

signals. 218

The remainder of this paper is organized as fol- 219

lows. Section 2 reviews recent advances in auto- 220

mated red-teaming and adversarial prompt gener- 221

ation for LLMs. Section 3 introduces the RedHit 222

framework in detail, describing the integration of 223

MCTS, CoT reasoning, and DPO. Section 4 out- 224

lines our experimental setup, evaluation metrics, 225

and our baseline, followed by extensive empirical 226

results. We also conduct an ablation study to iso- 227

late the contributions of each core module. Finally, 228

Section 5 concludes with a summary of our find- 229

ings and discusses promising future directions for 230

adaptive and scalable LLM red-teaming research. 231

2 Related Work 232

The growing capabilities of LLMs have amplified 233

the need to rigorously evaluate their robustness 234

against misuse and adversarial exploitation. Early 235

efforts in this space primarily relied on manual red- 236

teaming, where human annotators craft prompts to 237

probe model vulnerabilities (??). While valuable, 238

this approach is inherently limited by scalability, 239

subjectivity, and cost, often requiring large annota- 240

tion teams to identify unsafe behavior through ex- 241

tensive trial-and-error. To mitigate the inefficiency 242

of human evaluation, reward models trained on hu- 243

man preferences have been introduced to automate 244

the assessment of model responses (??). These 245

models approximate human judgment and provide 246

feedback signals for fine-tuning, enabling scalable 247

learning from preferences. However, the genera- 248

tion of high-quality adversarial prompts remains 249

predominantly human-driven, limiting the overall 250

scalability of red-teaming pipelines. 251

In response, recent work has explored the use of 252

language models themselves to generate adversar- 253

ial prompts. For instance, ? introduced a frame- 254

work that trains adversarial LLMs to red-team other 255

models, demonstrating the feasibility of LLMs as 256

both attackers and defenders. However, these ap- 257

proaches often rely on static attack strategies or 258

fine-tuned behaviors that do not generalize well 259

across evolving LLMs. As target models improve, 260

adversarial agents must also dynamically adapt 261

to more sophisticated and subtle defense mecha- 262

nisms. To address the challenge of evolving vul- 263

nerabilities, ? proposed leveraging GPT-based ad- 264

versaries to automatically jailbreak models. Their 265

findings highlight the potential of autoregressive 266

LLMs to discover and exploit security flaws, yet 267

also reveal the brittleness of such systems when 268

deployed in multi-turn or adaptive contexts. Sim- 269

ilarly, ? introduced MART, a hybrid framework 270

that combines automated adversarial prompt gen- 271

eration with safe response modeling to enhance ro- 272

bustness and adaptability in red-teaming pipelines. 273

Other methods like JailbreakBench and Prompt- 274

Bench have also aimed to standardize red-teaming 275

evaluations, though they typically lack iterative rea- 276

soning or self-improving feedback loops. Despite 277

these advances, existing automated red-teaming 278

frameworks often suffer from several limitations. 279

Many adopt single-step or greedy strategies that 280

fail to account for long-term planning or strategic 281

exploration. Additionally, few systems integrate 282

structured feedback mechanisms to continuously 283

improve adversarial capabilities over time. More- 284

over, most prior work underutilizes search-based 285

optimization and reasoning-enhanced generation, 286

both of which are critical for uncovering subtle 287

3

or evasive vulnerabilities. A fully automated and 288

adaptive red-teaming framework must be capable 289

of both uncovering current vulnerabilities and antic- 290

ipating emergent failure patterns through iterative 291

interaction. 292

To bridge these gaps, we propose RedHit, a 293

multi-round, progressive, and adaptive red-teaming 294

framework. RedHit combines MCTS (?), CoT rea- 295

soning (?), and DPO (?) to construct an ALLM 296

capable of dynamically generating increasingly ef- 297

fective attack prompts. The framework formulates 298

prompt injection as a tree search problem, where 299

MCTS guides the exploration of adversarial paths, 300

CoT enhances strategic reasoning during prompt 301

generation, and DPO fine-tunes the ALLM based 302

on feedback from prior attacks. Unlike earlier ap- 303

proaches, RedHit maintains a Prompt Search Tree 304

across rounds, allowing it to retain memory of prior 305

attempts, adapt search directions, and improve 306

long-term attack efficacy. Through this integra- 307

tion, RedHit moves beyond static prompt crafting 308

or single-step adversarial generation. It constructs 309

a PST, where each node contains an adversarial 310

prompt, corresponding model response, reward 311

(measured via an external evaluation framework 312

such as Garak), and control metadata. This de- 313

sign allows RedHit to support dynamic exploration, 314

structured optimization, and CoT-guided reasoning 315

in a unified, automated red-teaming pipeline. 316

3 Proposed Method 317

RedHit is an automated and multi-round red- 318

teaming framework designed to uncover vulner- 319

abilities in target large language models (TLLMs) 320

through adaptive adversarial prompt generation. It 321

treats prompt injection as a structured exploration 322

problem, constructing a dynamic PST where nodes 323

represent prompts, responses, and reward scores. 324

Figure ?? illustrates the overall RedHit workflow. 325

The ALLM generates CoT-guided prompt can- 326

didates, which are evaluated against the TLLM. 327

The resulting responses are scored via an exter- 328

nal evaluation framework, and high-performing 329

prompts are retained in the PST for policy refine- 330

ment. This closed-loop architecture—driven by 331

MCTS-based exploration, CoT-based prompt gen- 332

eration, and reward-guided optimization—enables 333

RedHit to progressively adapt and improve over 334

multiple attack rounds. Let T LLM denote the 335

target LLM under audit, and ALLM be an adver- 336

sarial LLM capable of generating attack prompts. 337

At each time step t, the adversary generates a can- 338

didate prompt xt using its current policy. The 339

prompt is submitted to T LLM, producing a re- 340

sponse rt = T LLM(xt), which is scored by a 341

reward function st = Reward(xt, rt) computed via 342

an external framework (e.g., Garak). The goal is 343

to iteratively improve ALLM such that it maxi- 344

mizes the expected cumulative reward
∑

t st, cor- 345

responding to the generation of increasingly effec- 346

tive adversarial prompts. The overall process is 347

summarized in Algorithm ??, which outlines Red- 348

Hit’s multi-round exploration and optimization pro- 349

cedure across search, evaluation, and preference- 350

driven fine-tuning. 351

Algorithm 1 RedHit Framework
Require: Target LLM T LLM, adversarial LLM ALLM,

reward model R (e.g., Garak), number of rounds N , roll-
out budget B

1: Initialize Prompt Search Tree T with root node and empty
result buffer

2: for i = 1 to N do
{Attack rounds}

3: for j = 1 to B do
{Tree rollouts}

4: Select node n in T using UCB traversal policy
5: Retrieve base prompt xbase

j from node n
6: Generate CoT reasoning trace τj using ALLM
7: Generate prompt set {x1

j , . . . , x
m
j } from τj using

IndirectPromptGenerator
8: for each prompt xk

j do
9: Query T LLM to get response rkj =

T LLM(xk
j)

10: Evaluate reward skj = R(xk
j , r

k
j) via

Evaluator
11: Expand T by adding node (xk

j , r
k
j , s

k
j) under n

12: Store (xk
j , r

k
j , s

k
j) in result buffer

13: end for
14: end for
15: Construct preference pairs from result buffer
16: Fine-tune IndirectPromptGenerator using DPO
17: Clear result buffer
18: end for
19: return Top-k adversarial prompts from T ranked by

reward

3.1 Tree-based Prompt Exploration with CoT 352

Guidance 353

RedHit employs Monte Carlo Tree Search (MCTS) 354

as its core search mechanism to explore the space 355

of adversarial prompts. Each node in the PST 356

stores a tuple (x, r, s), representing the adversar- 357

ial prompt, the response from T LLM, and the 358

resulting reward. The MCTS algorithm balances 359

exploration and exploitation using the Upper Confi- 360

dence Bound (UCB) criterion to traverse promising 361

branches. The tree search is implemented via a 362

configurable MCTreeSearch class that supports it- 363

4

Figure 1: Overview of the RedHit framework. An ALLM explores adversarial prompt space through MCTS,
guided by CoT reasoning and iteratively fine-tuned using DPO. The PST encodes prompt-response-reward tuples,
evaluated by the Garak framework.

erative rollouts with adjustable depth, breadth, and 364

final expansion rounds. Prompt generation is han- 365

dled by the IndirectPromptGenerator, which 366

wraps a locally hosted DSPy program that trans- 367

forms a base prompt into multiple indirect ad- 368

versarial variants using Chain-of-Thought reason- 369

ing. These reworded prompts form the candidate 370

branches during tree expansion. Each prompt is 371

executed using the target LLM through a stan- 372

dard interface, and the response is passed into an 373

Evaluator module. This evaluator aggregates the 374

detection results from multiple detectors and nor- 375

malizes the score over the number of generations 376

and detectors, yielding a soft reward signal. This 377

fine-grained reward is critical for driving effective 378

policy updates and deeper exploration. The evalua- 379

tor is automatically initialized per probe within the 380

ProbeWrapper, enabling seamless integration into 381

the red-teaming loop. 382

3.2 Reward-driven Optimization and Policy 383

Refinement 384

Following each attack round, RedHit uses the accu- 385

mulated interactions to construct preference pairs 386

from the PST. These are used to fine-tune ALLM 387

via DPO, aligning the adversary’s generation policy 388

to favor high-reward prompts. After each round, 389

high-reward outputs are stored and sampled for 390

continued learning or offline optimization. This 391

allows training to persist across multiple execution 392

sessions. By iteratively refining the adversarial pol- 393

icy through structured exploration (MCTS), CoT, 394

and preference-based optimization (DPO), RedHit 395

overcomes the limitations of static or brittle red- 396

teaming strategies. It adapts to increasingly robust 397

defenses in T LLM, discovers both common and 398

subtle vulnerabilities, and supports diverse, high- 399

reward adversarial strategies across multiple inter- 400

action rounds. Unlike prior frameworks, RedHit 401

supports local model hosting, reasoning-driven gen- 402

eration, and modular policy training—all within a 403

scalable and extensible DSPy-based environment. 404

3.3 Reward Formulation 405

To apply Monte Carlo Tree Search (MCTS), we 406

need to define a reward function to learn a policy 407

through an iterative process. MCTS updates the 408

rewards of tree nodes during the backpropagation 409

step, which is executed after each simulation. To 410

compute the rewards, we used Garak’s detector, 411

which generates multiple responses using T LLM 412

for each generation and determines whether each 413

response passes the test. Accordingly, we define 414

the reward for each node as the proportion of suc- 415

5

cessful prompt injections among the generated re- 416

sponses: 417

R(n) =

∑
r∈Gn

δ(r)

|Gn|
418

where Gn denotes the set of responses generated 419

at node n, and δ(r) = 1 if the response r is flagged 420

as a successful injection by the detector, and 0 421

otherwise. 422

4 Experimental Evaluation 423

To evaluate the effectiveness of the RedHit frame- 424

work, we conduct a comprehensive set of ex- 425

periments across multiple large language models 426

(LLMs). The adaptability of RedHit allows us to 427

apply it to all target LLMs using a variety of prompt 428

injection strategies. In this section, we present our 429

evaluation methodology, describe the experimental 430

setup, and analyze the results to assess RedHit’s 431

performance and robustness compared to existing 432

approaches. 433

4.1 Experimental Setup 434

We evaluate RedHit against original and distilled 435

version state-of-the-art LLMs serving as target 436

models (T LLM),including: 437

• LLaMA 3 (?) 438

• Gamma-3 (?) 439

• Mistral7B (?) 440

• DeepSeek-R1-Distill-Qwen-7B (?) 441

• Phi-4 (?) 442

?? demonstrates the details of LLMs we used 443

for evaluate our proposed method. 444

The adversarial agent ALLM is initial- 445

ized using 4-bit quantized LLaMA3 8B model 446

and interacts with the target model through 447

multi-round attacks. Prompt generation is 448

performed using a Chain-of-Thought-enabled 449

IndirectPromptGenerator, which rephrases 450

prompts into more evasive variants during MCTS 451

exploration. Model responses are scored using a 452

custom Evaluator class that aggregates the out- 453

puts of multiple detectors implemented within the 454

Garak framework (?). All experiments are con- 455

ducted offline within a modular, reproducible en- 456

vironment using RedHit’s local execution pipeline. 457

RedHit runs for N = 100 attack rounds, with a 458

rollout budget B = 5 per round, and each prompt 459

tree is expanded up to a configurable depth. We 460

ran RedHit on a 24GB NVIDIA A30 GPU that 461

hosted ALLM via the VLLM framework, and we 462

also applied 4-bit quantization to ALLM using 463

the bitsandbytes library. 464

4.2 Evaluation Metrics 465

The Attack Success Rate (ASR) metric is used to 466

evaluate the effectiveness of RedHit’s adversarial 467

prompts. ASR is defined as the percentage of gener- 468

ated responses that violate policy due to successful 469

prompt injection. Since Garak generates a spe- 470

cific number of responses (by default, 5) for each 471

harmful prompt, we applied a slight modification 472

to enable a more comprehensive evaluation of our 473

proposed method. In our approach, an attack is 474

considered successful for a given prompt if the 475

proportion of successful attack responses meets or 476

exceeds a specified threshold (default: 0.5). We 477

modified the default settings by changing the num- 478

ber of generations to 6 and ran RedHit across 10 479

thresholds ranging from 0.1 to 1.0. 480

ASR =
Nsuccess

Ntotal
(1) 481

where Nsuccess is the number of successful attacks 482

and Ntotal is the total number of prompts issued. 483

4.3 Evaluation Results 484

In the following sections, we present and analyze 485

the evaluation results of the proposed methods. A 486

thorough examination is conducted to assess the 487

performance of our approach, supported by de- 488

tailed discussion and visualizations. 489

4.3.1 Threshold-Based Evaluation of ALLM 490

Since the MCTS reward ranges from 0.0 to 1.0, we 491

use it as a threshold to determine when a generated 492

prompt is considered a successful prompt injection. 493

We evaluate our proposed method across 10 thresh- 494

old levels, from 0.1 to 1.0. A threshold of 1.0 indi- 495

cates that a prompt injection is considered success- 496

ful only if all six responses from the target LLM are 497

successfully affected by the ALLM prompt. ?? 498

shows the result of our custom threshold-based ex- 499

priments. 500

4.4 Comparison Results 501

To contextualize the performance of RedHit, we 502

compare RedHit against the Garak framework, 503

which is leading and highly significant red-teaming 504

framework. Garak is a widely used baseline for 505

6

Table 1: Model Specifications

Model Architecture Parameters Context
Length

Embedding
Length

Quantization

DeepSeek-R1 qwen2 7.6B 131072 3584 Q4_K_M
llama3 llama 8.0B 8192 4096 Q4_0
gemma3 gemma3 4.3B 131072 2560 Q4_K_M
mistral llama 7.2B 32768 4096 Q4_0
phi4 phi3 14.7B 16384 5120 Q4_K_M

Figure 2: This figure illustrates the number of model
outputs that exceed increasing accuracy thresholds (0.1
to 1.0) for five different LLMs. It highlights how perfor-
mance declines as stricter confidence levels are applied,
offering a comparative view of each model’s robustness
under higher accuracy demands.

evaluating adversarial prompts targeting LLMs. It 506

attempts to bypass safety filters through automati- 507

cally generated injections. This comparison helps 508

highlight the effectiveness and reliability of our 509

proposed approach. In this experiment, we gener- 510

ate 100 malicious prompts using the ALLM after 511

training phase and then replaced these prompt with 512

the Garak attempt prompt. ?? show the perfor- 513

mance of Garak across different models while ?? 514

show the RedHit performance. 515

When comparing Garak and Redhit across the 516

same set of models, the differences in ASR high- 517

light Redhit’s consistent performance. Redhit out- 518

performs Garak by a 20.7% difference on LLaMA3, 519

a 1.65% difference on Mistral-7B, and a 15.6% 520

difference on DeepSeek-R1. Additionally, Redhit 521

shows a 4.35% improvement over Garak on Phi4. 522

While Redhit has a 12.2% lower ASR on Gemma3, 523

indicating Garak’s better performance on more vul- 524

nerable models, the overall trends demonstrate that 525

Redhit provides a more nuanced and precise eval- 526

Figure 3: This chart illustrates the ASR of Garak across
different language models. The results indicate that
Gemma 3 is significantly more vulnerable to adversarial
prompt injections compared to the other models, achiev-
ing an ASR of 87.4%.

uation. The method’s targeted approach proves 527

particularly effective against models designed to 528

resist basic adversarial attacks. Overall, Redhit’s 529

ability to consistently achieve competitive or supe- 530

rior results across various models emphasizes its 531

value as a reliable and refined red-teaming tool. 532

5 Conclusion 533

We presented RedHit, a fully automated and adap- 534

tive red-teaming framework that leverages MCTS, 535

CoT reasoning, and DPO to iteratively generate 536

high-quality adversarial prompts. RedHit treats 537

prompt injection as a structured search problem, 538

systematically exploring and expanding a prompt 539

search tree while refining its generation policy 540

through preference-based optimization. Our im- 541

plementation integrates reasoning-driven prompt 542

rewording, multi-detector evaluation, and modular 543

fine-tuning, enabling RedHit to adapt over rounds 544

and uncover both common and subtle vulnerabil- 545

ities. Experimental evaluations compare RedHit 546

against strong baselines, with ablations confirm- 547

ing the contribution of each component. Results 548

demonstrate superior attack success, diversity, and 549

7

Figure 4: Redhit shows superior performance on
LLaMA3, Mistral-7B, DeepSeek-R1, and Phi4. These
results highlight its effectiveness across multiple mod-
els.

efficiency. RedHit advances scalable LLM auditing 550

and offers a blueprint for combining search, reason- 551

ing, and learning in adversarial generation. Future 552

work will explore multi-agent extensions, domain- 553

specific reasoning, and integration with defenses to 554

support closed-loop safety evaluation. 555

References 556

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien 557
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael 558
Harrison, Russell J Hewett, Mojan Javaheripi, Piero 559
Kauffmann, and 1 others. 2024. Phi-4 technical re- 560
port. arXiv preprint arXiv:2412.08905. 561

Yuntao Bai, Saurav Kadavath, and 1 others. 2022. Train- 562
ing a helpful and harmless assistant with reinforce- 563
ment learning from human feedback. arXiv preprint 564
arXiv:2204.05862. 565

Cameron B Browne, Edward Powley, and 1 others. 2012. 566
A survey of monte carlo tree search methods. IEEE 567
Transactions on Computational Intelligence and AI 568
in Games, 4(1):1–43. 569

Shuyang Chen, Zhe Sun, and 1 others. 2023. Mart: 570
Improving the robustness of language models via 571
multi-turn adversarial training. arXiv preprint 572
arXiv:2310.01931. 573

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 574
Abhinav Pandey, Abhishek Kadian, Ahmad Al- 575
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, 576
Alex Vaughan, and 1 others. 2024. The llama 3 herd 577
of models. arXiv preprint arXiv:2407.21783. 578

Bastian Greshake Tzovaras and 1 others. 2023. Does 579
gpt-4 pass the red team test? harnessing llms 580
for automatic prompt injection. arXiv preprint 581
arXiv:2304.13709. 582

Xiaodong Gu, Meng Chen, Yalan Lin, Yuhan Hu, 583
Hongyu Zhang, Chengcheng Wan, Zhao Wei, Yong 584

Xu, and Juhong Wang. 2025. On the effectiveness of 585
large language models in domain-specific code gen- 586
eration. ACM Transactions on Software Engineering 587
and Methodology, 34(3):1–22. 588

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao 589
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi- 590
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025. 591
Deepseek-r1: Incentivizing reasoning capability in 592
llms via reinforcement learning. arXiv preprint 593
arXiv:2501.12948. 594

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 595
sch, Chris Bamford, Devendra Singh Chaplot, Diego 596
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 597
laume Lample, Lucile Saulnier, Lélio Renard Lavaud, 598
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 599
Thibaut Lavril, Thomas Wang, Timothée Lacroix, 600
and William El Sayed. 2023. Mistral 7b. Preprint, 601
arXiv:2310.06825. 602

OpenAI. 2023. Gpt-4 technical report. OpenAI Techni- 603
cal Report. 604

Long Ouyang, Jeffrey Wu, and 1 others. 2022. Training 605
language models to follow instructions with human 606
feedback. arXiv preprint arXiv:2203.02155. 607

Ethan Perez, Kyle Yu, and 1 others. 2022. Red team- 608
ing language models with language models. arXiv 609
preprint arXiv:2202.03286. 610

Rafael Rafailov, Yining Zhou, and 1 others. 2023. 611
Direct preference optimization: Your language 612
model is secretly a reward model. arXiv preprint 613
arXiv:2305.18290. 614

M. Ranta and 1 others. 2023. Garak: A framework for 615
automated red-teaming of language models. https: 616
//github.com/leondz/garak. 617

Robert Shelby, Carl Vondrick, and 1 others. 2023. Can 618
llms be safely released? evaluating the impact of red 619
teaming on language model behavior. arXiv preprint 620
arXiv:2304.10685. 621

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya 622
Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin, 623
Tatiana Matejovicova, Alexandre Ramé, Morgane 624
Rivière, and 1 others. 2025. Gemma 3 technical 625
report. arXiv preprint arXiv:2503.19786. 626

Hugo Touvron, Thibaut Lavril, and 1 others. 2023. 627
Llama 2: Open foundation and fine-tuned chat mod- 628
els. arXiv preprint arXiv:2307.09288. 629

Jason Wei, Xuezhi Wang, and 1 others. 2022. Chain-of- 630
thought prompting elicits reasoning in large language 631
models. arXiv preprint arXiv:2201.11903. 632

Laura Weidinger, Jonathan Uesato, Jack Rae, and 1 633
others. 2021. Ethical and social risks of harm from 634
language models. arXiv preprint arXiv:2112.04359. 635

8

https://arxiv.org/abs/2310.06825
https://cdn.openai.com/papers/gpt-4.pdf
https://github.com/leondz/garak
https://github.com/leondz/garak
https://github.com/leondz/garak

Laura Weidinger, Jonathan Uesato, Maribeth Rauh, 636
Conor Griffin, Po-Sen Huang, John Mellor, Amelia 637
Glaese, Myra Cheng, Borja Balle, Atoosa Kasirzadeh, 638
and 1 others. 2022. Taxonomy of risks posed by lan- 639
guage models. In Proceedings of the 2022 ACM con- 640
ference on fairness, accountability, and transparency, 641
pages 214–229. 642

Andy Zou, James Zou, and 1 others. 2023. Univer- 643
sal and transferable adversarial attacks on aligned 644
language models. arXiv preprint arXiv:2307.15043. 645

9

