Supplementary Material

In this document we give proofs for propositions (1) and (2) in the main paper. We use a slightly different notation for simplicity. We give a constructive proof for Proposition (2) that inherently implies Proposition (1). In the following section we give the necessary definitions and define the proximal operator for ℓ_{∞}^{T}-norm followed by proof in the next section.

1 Definitions

Let us consider a tree-structured set of groups of variables \mathcal{G}, which are subsets of $\{1, \ldots, p\}$. The tree-structure definition follows [1], where two groups g and g^{\prime} are either disjoint or one is included in the other.

Definition 1 (Tree-structured set of groups).

A set of groups $\mathcal{G} \triangleq\{g\}_{g \in \mathcal{G}}$ is said to be tree-structured in $\{1, \ldots, p\}$, if $\bigcup_{g \in \mathcal{G}} g=$ $\{1, \ldots, p\}$ and if for all $g, h \in \mathcal{G}, g \cap h=\emptyset$, or $g \subseteq h$, or $h \subseteq g$. We also define for each group g,

- the set of variables $\operatorname{root}(g) \subseteq g$ is such that $i \in \operatorname{root}(g)$ is not in g^{\prime} for all group $g^{\prime} \subseteq g$;
- the set of groups children (g) is the set of groups g^{\prime} such that $g^{\prime} \subseteq g$.

We are now interested in the following optimization problem

$$
\begin{equation*}
\min _{\mathbf{w} \in \mathbb{R}^{p}} \frac{1}{2}\|\mathbf{u}-\mathbf{w}\|_{2}^{2}+\lambda \sum_{g \in \mathcal{G}}\left\|\mathbf{w}_{g}\right\|_{\infty} \tag{1}
\end{equation*}
$$

Following [1], it can be solved by Algorithm 1 where Π_{λ} is the Euclidean projection on the ℓ_{1}-ball of radius λ.

Lemma 1 (Equivalent Views of the ℓ_{∞}-proximal Operator). Let us consider the proximal operator Prox ${ }_{\lambda}^{g}$:

$$
\operatorname{Prox}_{\lambda}^{g}: \mathbf{u} \mapsto \underset{\mathbf{w} \in \mathbb{R}^{p}}{\arg \min } \frac{1}{2}\|\mathbf{u}-\mathbf{w}\|_{2}^{2}+\lambda\left\|\mathbf{w}_{g}\right\|_{\infty}
$$

Then,

$$
\begin{equation*}
\left[\operatorname{Prox}_{\lambda}^{g}(\mathbf{u})\right]_{g}=\mathbf{u}_{g}-\Pi_{\lambda}\left(\mathbf{u}_{g}\right) \tag{2}
\end{equation*}
$$

```
Algorithm 1 Computation of the Proximal Operator.
    Inputs: \(\mathbf{u} \in \mathbb{R}^{p}\) and an ordered tree-structured set of groups \(\mathcal{G}\) with root \(g_{0}\).
    Initialization: \(\mathbf{w} \leftarrow \mathbf{u}\);
    Call recursiveProx \(\left(g_{0}\right)\);
    Return w.
Procedure recursiveProx \((g)\)
    for \(h \in \operatorname{child}(g)\) do
        Call recursiveProx \((h)\);
    end for
    \(\mathbf{w}_{g} \leftarrow \mathbf{w}_{g}-\Pi_{\lambda}\left(\mathbf{w}_{g}\right)\).
```

and there exists $\tau \geq 0$ such that for all $j \in g$,

$$
\begin{array}{r}
{\left[\operatorname{Prox}_{\lambda}^{g}(\mathbf{u})\right]_{j}=\operatorname{sign}\left(\mathbf{u}_{j}\right) \min \left(\left|\mathbf{u}_{j}\right|, \tau\right) \quad \text { and }} \\
\left\{\left\|\Pi_{\lambda}\left(\mathbf{u}_{g}\right)\right\|_{1}=\sum_{j \in g} \max \left(\left|\mathbf{u}_{j}\right|-\tau, 0\right)=\lambda \quad \text { or } \tau=0\right\} \tag{4}
\end{array} .
$$

Proof. The proof of Eq. (2) can be found in [1]. The proof of Eq. (4) consists of noticing that the projection on the ℓ_{1}-ball is obtained by a soft-thresholding operator [1]. In other words, there exists $\tau \geq 0$ such that $\left[\Pi_{\lambda}(\mathbf{u})\right]_{j}=\operatorname{sign}\left(\mathbf{u}_{j}\right) \max \left(\left|\mathbf{u}_{j}\right|-\right.$ $\tau, 0)$ for all j in g. We notice that by definition of the Euclidean projection, either $\left\|\Pi_{\lambda}\left(\mathbf{u}_{g}\right)\right\|_{1}<\lambda$ and $\Pi_{\lambda}\left(\mathbf{u}_{g}\right)=\mathbf{u}_{g}$ (meaning $\tau=0$), or $\left\|\Pi_{\lambda}\left(\mathbf{u}_{g}\right)\right\|_{1}=\lambda$. This yields (4).

By using the definition of $\operatorname{Prox}_{\lambda}^{g}$, we see that Algorithm 1 in fact performs a composition of proximal operators. Suppose that the groups in $\mathcal{G}=\left\{g_{1}, \ldots, g_{k}\right\}$ are ordered according to depth-first search order, we have

$$
\operatorname{Prox}_{\lambda \Omega}=\operatorname{Prox}^{g_{k}} \circ \ldots \circ \operatorname{Prox}^{g_{1}}
$$

where Ω is the tree-structured penalty $\Omega(\mathbf{w})=\sum_{g \in \mathcal{G}}\left\|\mathbf{w}_{g}\right\|_{\infty}$, and \circ is a composition operator.

We now have the following (Proposition 2 of main paper) to compose proximal step over constant value non-branching paths or nested groups. We prove this by showing that in consecutive projections the τ in 3 can only be smaller than the previous one forcing the values along a non-branching path to be equal.

Lemma 2 (Composition Lemma Along Nested Groups).

Assume that for all groups g in \mathcal{G}, root (g) is a singleton $\{r(g)\}$. Consider a particular group g with a single child g^{\prime}, such that $\mathbf{u}_{r(g)}=\mathbf{u}_{r\left(g^{\prime}\right)}$. Then,

$$
\left(\operatorname{Prox}_{\lambda}^{g} \circ \operatorname{Prox}_{\lambda}^{g^{\prime}}\right)(\mathbf{u})=\operatorname{Prox}_{2 \lambda}^{g}(\mathbf{u})
$$

Proof. Without loss of generality, let us assume that all the entries of \mathbf{u} are non-negative. Indeed, it is sufficient to store beforehand the signs of that vector, compute the proximal operator of the vector with nonnegative entries, and assign the stored signs to the result [1]. We also have

$$
\left[\left(\operatorname{Prox}_{\lambda}^{g} \circ \operatorname{Prox}_{\lambda}^{g^{\prime}}\right)(\mathbf{u})\right]_{j}=\left[\operatorname{Prox}_{2 \lambda}^{g}(\mathbf{u})\right]_{j}=\mathbf{u}_{j} \quad \text { for all } j \notin g
$$

since all the proximal operators only affect the variables in g and g^{\prime}. Let us now define $\mathbf{v} \triangleq \operatorname{Prox}_{\lambda}^{g^{\prime}}(\mathbf{u}), \mathbf{w}^{\star} \triangleq \operatorname{Prox}_{\lambda}^{g}(\mathbf{v})$

Consider τ^{\prime} defined in Lemma 1. such that $\mathbf{v}_{g^{\prime}}=\min \left(\mathbf{u}_{g^{\prime}}, \tau^{\prime}\right)$, and τ such that $\mathbf{w}_{g}^{\star}=\min \left(\mathbf{v}_{g}, \tau\right)$.
First step: $\tau \leq \tau^{\prime}$:
Let us proceed by contradiction and assume that $\tau^{\prime}<\tau$. Then, we have $\mathbf{v}_{g^{\prime}} \leq \tau$ and thus, Eq. (4) applied to the group g gives us that $\mathbf{u}_{r(g)}-\tau=\mathbf{v}_{r(g)}-\tau=\lambda$ since $\tau \neq 0$ and $g=g^{\prime} \cup\{r(g)\}$. Note also that $\mathbf{u}_{r\left(g^{\prime}\right)}-\tau^{\prime} \leq\left\|\Pi_{\lambda}\left(\mathbf{u}_{g^{\prime}}\right)\right\|_{1} \leq \lambda$ according to Eq. (4) applied to the group g^{\prime}. Since $\mathbf{u}_{r\left(g^{\prime}\right)}=\mathbf{u}_{r(g)}$, we have $\mathbf{u}_{r\left(g^{\prime}\right)}-\tau^{\prime} \leq \mathbf{u}_{r(g)}-\tau$, and $\tau \leq \tau^{\prime}$, which is a contradiction.
End of the proof:
By using Eq. (4), and using the fact that $\tau \leq \tau^{\prime}$, we now have a closed form solution for \mathbf{w}_{g}^{\star} :

$$
\mathbf{w}_{g}^{\star}=\min \left(\mathbf{u}_{g}, \tau\right) .
$$

We now consider two cases

- if $\tau=0$, we have $\mathbf{w}_{g}^{\star}=0$, and thus $\mathbf{v}_{g}=\Pi_{\lambda}\left(\mathbf{v}_{g}\right)$, meaning that $\left\|\mathbf{v}_{g}\right\|_{1} \leq \lambda$. Thus, $\left\|\mathbf{u}_{g}\right\|_{1}=\left\|\mathbf{v}_{g}\right\|_{1}+\left\|\mathbf{u}_{g^{\prime}}-\mathbf{v}_{g^{\prime}}\right\|_{1} \leq \lambda+\left\|\Pi_{\lambda}\left(\mathbf{u}_{g^{\prime}}\right)\right\|_{1} \leq 2 \lambda$. Thus, $\left[\operatorname{Prox}_{2 \lambda}^{g}(\mathbf{u})\right]_{g}=0=\mathbf{w}_{g}^{\star}$;
- if $\tau>0$, we define the quantity $\mathbf{z}_{g}=\mathbf{u}_{g}-\mathbf{w}_{g}^{\star}=\max \left(\mathbf{u}_{g}-\tau, 0\right)$, which has the form of an orthogonal projection of \mathbf{u}_{g} onto the ℓ_{1}-ball of some radius λ^{\prime} (see [1]). It remains to compute $\left\|\mathbf{z}_{g}\right\|_{1}$ to know the radius of λ^{\prime}. We have

$$
\left\|\mathbf{z}_{g}\right\|_{1}=\left\|\mathbf{u}_{g}-\mathbf{w}_{g}^{\star}\right\|_{1}=\left\|\mathbf{u}_{g}-\mathbf{v}_{g}+\mathbf{v}_{g}-\mathbf{w}_{g}^{\star}\right\|_{1}=\left\|\mathbf{u}_{g^{\prime}}-\mathbf{v}_{g^{\prime}}\right\|_{1}+\left\|\mathbf{v}_{g}-\mathbf{w}_{g}^{\star}\right\|_{1}=2 \lambda
$$

where we apply again Eq. (4). Thus, $\mathbf{z}_{g}=\Pi_{2 \lambda}\left(\mathbf{u}_{g}\right)$ and $\left.\mathbf{w}_{g}^{\star}=\operatorname{Prox}_{2 \lambda}^{g}(\mathbf{u})\right]_{g}$ by using Eq. (2).

This proof can be put together for paths with more than two nested groups to inductively construct single-step proximal projections for longer paths.

It is easy to see from this definition 4 that all entries with the same value $u_{j}=\delta \forall j$ will continue to share a value after applying the proximal operator $\min (\delta, \tau)$. We see from 2 that all entries at nested groups will be projected to the same value. This in fact turns out to be a single projection with the λ scaled appropriately. These two put together we have the property that constant value non-branching paths are preserved.

References

[1] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierarchical sparse coding. Journal of Machine Learning Research, 12:22972334, 2011.

