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We have bounded the number of mistakes SWVP
is making in an on-line setup. We next provide guar-
antees as to how well the algorithm generalizes to a
new example.

Generalization Bound Let us consider the train-
ing set D as an ordered sequence: D =
{(x1, y1), . . . , (xn, yn)}, and let us run the SWVP
online algorithm on this sequence. At each round
t = 1, . . . , n, the algorithm may update the
weight vector w, so we get a sequence of weight
vectors w1, . . . ,wn, from which we can create
an hypotheses sequence of the form ht(x) =
argmaxy′∈Y(x) wt · φ(x, y′).

To check the algorithm success in generalizing to
a new test example (xn+1, yn+1), we need to decide
which hypothesis to use from the above sequence,
under the assumption that both the training examples
and the new test example are drawn i.i.d from an
(unknown) distribution P (x, y).

Freund and Schapire (1999) presented the voted
perceptron, a batch variant of the perceptron algo-
rithm, and (Collins, 2002) presented an approxima-
tion for this variant called the averaged parameters
perceptron that holds the same generalization guar-
antees. We adapt the averaged parameters setting to
our algorithm. The resulting adaptation of (Freund
and Schapire, 1999) then states:

Theorem 1 (Freund & Schapire 99). Assume all
examples are generated i.i.d. at random. Let
(x1, y1), . . . , (xn, yn) be a sequence of training ex-
amples and let (xn+1, yn+1) be a test example. For
a pair u, δ such that ‖u‖ = 1 and δ > 0 define Du,δ
as before. Then the probability (over the choice of
n+1 examples) that the voted SWVP algorithm does

not predict yn+1 on test instance xn+1 is at most
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where En+1 is an expected value taken over n + 1
examples.

Note that the adaptation of (Freund and Schapire,
1999) to the original CSP algorithm provided by
(Collins, 2002) gives the generalization bound
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. This means

that the generalization bound of SWVP is upper
bounded by the generalization bound of CSP (con-
vergence property 1 and theorem 2).
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