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1 Vector Space Models

1.1 Unsupervised Text-Based Models

These models mainly learn from co-occurrence statis-
tics in large corpora, therefore to facilitate the gener-
ality of our results, we evaluate them on two different
corpora. With 8B we refer to the corpus produced by
the word2vec script, consisting of 8 billion tokens
from various sources (Mikolov et al., 2013a).1 With
PW we refer to the English Polyglot Wikipedia cor-
pus (Al-Rfou et al., 2013).2 d denotes the embedding
dimensionality, and ws is the window size in case of
bag-of-word contexts. The models we consider are
as follows:

SGNS-BOW (PW, 8B) Skip-gram with negative
sampling (SGNS) (Mikolov et al., 2013a; Mikolov
et al., 2013b) trained with bag-of-words (BOW) con-
texts; d = 500, ws = 2 on 8B as in prior work
(Melamud et al., ; Schwartz et al., 2016). d = 300,
ws = 2 on PW as in prior work (Levy and Goldberg,
2014; Vulić and Korhonen, 2016).

SGNS-UDEP (PW) SGNS trained with universal
dependency3 (UD) contexts following the setup of
(Levy and Goldberg, 2014; Vulić and Korhonen,
2016). The PW data were POS-tagged with universal
POS (UPOS) tags (Petrov et al., 2012) using Turbo-
Tagger (Martins et al., 2013)4, trained using default
settings without any further parameter fine-tuning
(SVM MIRA with 20 iterations) on the TRAIN+DEV

portion of the UD treebank annotated with UPOS
tags. The data were then parsed using the graph-
based Mate parser v3.61 (Bohnet, 2010).5 d = 300
as in (Vulić and Korhonen, 2016)

SGNS-DEP (8B) Another variant of a dependency-
based SGNS model is taken from the recent work of
Schwartz et al. (2016), based on Levy and Goldberg
(2014). The 8B corpus is parsed with labeled Stan-
ford dependencies (de Marneffe and Manning, 2008),

1https://code.google.com/archive/p/word2vec/
2https://sites.google.com/site/rmyeid/projects/polyglot
3http://universaldependencies.org/ (version 1.2)
4http://www.cs.cmu.edu/ ark/TurboParser/
5https://code.google.com/archive/p/mate-tools/

the Stanford POS Tagger (Toutanova et al., 2003)
and the stack version of the MALT parser (Goldberg
and Nivre, 2012) are used; d = 500 as in prior work
(Schwartz et al., 2016).

All other parameters of all SGNS models are set
to the standard settings: the models are trained with
stochastic gradient descent, global learning rate of
0.025, subsampling rate 1e− 4, 15 epochs.

SymPat (8B) A template-based approach to vec-
tor space modeling introduced by Schwartz et al.
(2015). Vectors are trained based on co-occurrence
of words in symmetric patterns (Davidov and Rap-
poport, 2006), and an antonym detection mechanism
is plugged in the representations. We use pre-trained
dense vectors (d = 300 and d = 500) with the
antonym detector enabled, available online.6

Count-SVD Traditional count-based vectors using
PMI weighting and SVD dimensionality reduction
(ws = 2; d = 500). This is the best performing re-
duced count-based model from Baroni et al. (2014),
vectors were obtained online.7

1.2 Models Relying on External Resources
Non-Distributional Sparse binary vectors built
from a wide variety of hand-crafted linguistic re-
sources, e.g., WordNet, Supersenses, FrameNet,
Emotion and Sentiment lexicons, Connotation lexi-
con, among others (Faruqui and Dyer, 2015).8

Paragram Wieting et al. (2015) use the Paraphrase
Database (PPDB) (Ganitkevitch et al., 2013) word
pairs to learn word vectors which emphasise para-
phrasability. They do this by fine-tuning, also known
as retro-fitting (Faruqui et al., 2015), word2vec
vectors using a SGNS inspired objective function
designed to incorporate the PPDB semantic similar-
ity constraints. Two variants are available online:
d = 25 and d = 300.9

Paragram+CF Mrkšić et al. () suggest another
variant of the retro-fitting procedure called counter-

6http://www.cs.huji.ac.il/˜roys02/papers/sp embeddings/
7http://clic.cimec.unitn.it/composes/semantic-vectors.html
8https://github.com/mfaruqui/non-distributional
9http://ttic.uchicago.edu/∼wieting/



fitting (CF) which further improves the Paragram vec-
tors by injecting antonymy constraints from PPDB
v2.0 (Pavlick et al., 2015) into the final vector space.
d = 300.10
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