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Semantic Graphs

● WordNet-like resources are curated to 
describe relations between word senses

● The graph is directed
○ Edges have form <S, r, T>: <zebra, is-a, equine>
○ Still, some relations are symmetric

● Relation types include:
○ Hypernym (is-a) <zebra, r, equine>
○ Meronym (is-part-of) <tree, r, forest>
○ Is-instance-of <rome, r, capital>
○ Derivational Relatedness <nice, r, nicely>
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Semantic Graphs - Relation Prediction

● The task of predicting relations (zebra is a <BLANK>)
● Local models use embeddings-based composition for 

scoring edges
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Semantic Graphs - Relation Prediction

● The task of predicting relations (zebra is a <BLANK>)
● Local models use embeddings-based composition for 

scoring edges
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Semantic Graphs - Relation Prediction

● The task of predicting relations (zebra is a <BLANK>)
● Local models use embeddings-based composition for 

scoring edges
● Problem: task-driven method can learn unreasonable 

graphs
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Incorporating a Global View

● We want to avoid unreasonable graphs
● Imposing hard constraints isn’t flexible enough

○ Only takes care of impossible graphs
○ Requires domain knowledge

● We still want the local signal to matter - it’s very strong.
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Incorporating a Global View

● We want to avoid unreasonable graphs
● Imposing hard constraints isn’t flexible enough

○ Only takes care of impossible graphs
○ Requires domain knowledge

● We still want the local signal to matter - it’s very strong.
● Our solution: an additive, learnable global graph score

Score(<zebra, hypernym, equine>| WordNet) =

slocal(edge) + 𝚫(sglobal(WN + edge), sglobal(WN))
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Global Graph Score

● Based on a framework called Exponential Random Graph Model (ERGM)
● The score   sglobal(WN)   is derived from a log-linear distribution across possible 

graphs that have a fixed number n of nodes

pERGM(WN) ∝ exp(𝝷T · 𝚽(WN))

Weights  
vector

Graph 
features
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Global Graph Score

● Based on a framework called Exponential Random Graph Model (ERGM)
● The score   sglobal(WN)   is derived from a log-linear distribution across possible 

graphs that have a fixed number n of nodes

● OK. What are the features?

pERGM(WN) ∝ exp(𝝷T · 𝚽(WN))

Weights  
vector

Graph 
features
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Graph Features (Motifs)

● #edges: 6
● #targets: 4
● #3-cycles: 0
● #2-paths: 4
● Transitivity: ¼ = 0.25
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Graph Motifs (multiple relations)

● #edges: 6
● #targets: 4
● #3-cycles: 0
● #2-paths: 4
● Transitivity: ¼ = 0.25
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(some) joint blue/orange motifs:

● #edges {b, o}: 9
● #2-cycles {b, o}: 1
● #3-cycles (b-o-o): 1
● #3-cycles (b-b-o): 0

● #2-paths (b-b): 4
● #2-paths (b-o): 3
● #2-paths (o-b): 4
● Transitivity (b-o-b): ⅔ = 0.67
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ERGM Training

● Estimating the scores for all possible graphs to obtain a probability distribution 
is implausible
○ Number of possible directed graphs with n nodes: O(exp(n2))
○ n nodes, R relations: O(exp(R*n2))
○ Estimation begins to be hard at ~n=100 for R=1. In WordNet: n = 40K, R = 11.
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algorithm either
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ERGM Training

● Estimating the scores for all possible graphs to obtain a probability distribution 
is implausible
○ Number of possible directed graphs with n nodes: O(exp(n2))
○ n nodes, R relations: O(exp(R*n2))
○ Estimation begins to be hard at ~n=100 for R=1. In WordNet: n = 40K, R = 11.

● Unlike other structured problems, there’s no known dynamic programming 
algorithm either

What can we do?

● Decompose score over dyads (node pairs) in graph
● Draw and score negative sample graphs
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Max-Margin Markov Graph Model (M3GM)

● Sample negative graphs from the “local 
neighborhood” of the true WN

24



Max-Margin Markov Graph Model (M3GM)

● Sample negative graphs from the “local 
neighborhood” of the true WN

25



Max-Margin Markov Graph Model (M3GM)

● Sample negative graphs from the “local 
neighborhood” of the true WN

26



Max-Margin Markov Graph Model (M3GM)

● Sample negative graphs from the “local 
neighborhood” of the true WN

27



Max-Margin Markov Graph Model (M3GM)

● Sample negative graphs from the “local 
neighborhood” of the true WN

● Loss = Max {0, 1 + score(negative sample)

     - score(WN)}
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Max-Margin Markov Graph Model (M3GM)

● It’s important to choose an appropriate
proposal distribution (source of the negative samples)
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Max-Margin Markov Graph Model (M3GM)

● It’s important to choose an appropriate
proposal distribution (source of the negative samples)

● We want to make things hard for the scorer

Q(v|s, r) ∝ slocal(<s, r, v>)

s v

t

v v

v
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Evaluation

● Dataset - WN18RR
○ No reciprocal relations (hypernym ⇔ hyponym)
○ Still includes symmetric relations

● Metrics - MRR, H@10

● Rule baseline - take symmetric if exists in train
○ Used in all models as default for symmetric relations

● Local models
○ Synset embeddings - averaged from FastText

● M3GM (re-rank top 100 from local)
○ ~ 3000 motifs, ~900 non-zero
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● Dataset - WN18RR
○ No reciprocal relations (hypernym ⇔ hyponym)
○ Still includes symmetric relations

● Metrics - MRR, H@10

● Rule baseline - take symmetric if exists in train
○ Used in all models as default for symmetric relations

● Local models
○ Synset embeddings - averaged from FastText

● M3GM (re-rank top 100 from local)
○ ~ 3000 motifs, ~900 non-zero
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Feature Analysis

● Motifs with heavy positive weights:
○ Targets of has_part
○ Two-paths hypernym → derivationally_related_form

● Motifs with heavy negative weights:
○ Targets of hypernym
○ Two-cycles of hypernym
○ Target of both has_part and verb_group
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Feature Analysis

● Motifs with heavy positive weights:
○ Targets of has_part
○ Two-paths hypernym → derivationally_related_form

● Motifs with heavy negative weights:
○ Targets of hypernym
○ Two-cycles of hypernym
○ Target of both has_part and verb_group

indian lettuce

lettuce

herb

garden lettuce ......

......

Seen in training data

Local-only prediction

M3GM prediction
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● Motifs with heavy positive weights:
○ Targets of has_part
○ Two-paths hypernym → derivationally_related_form

● Motifs with heavy negative weights:
○ Targets of hypernym
○ Two-cycles of hypernym
○ Target of both has_part and verb_group

Feature Analysis
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● Motifs with heavy positive weights:
○ Targets of has_part
○ Two-paths hypernym → derivationally_related_form

● Motifs with heavy negative weights:
○ Targets of hypernym
○ Two-cycles of hypernym
○ Target of both has_part and verb_group

Feature Analysis

Hypernym

Deriv. Related form
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(bodega / canteen vs. shop)



Feature Analysis

● Motifs with heavy positive weights:
○ Targets of has_part
○ Two-paths hypernym → derivationally_related_form

● Motifs with heavy negative weights:
○ Targets of hypernym
○ Two-cycles of hypernym
○ Target of both has_part and verb_group

Nouns Verbs

40



● Multilingual transfers of semantic graphs

יונק

סוסיכלבי

סוס זברה זאב פנק

Future Work
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● Multilingual transfers of semantic graphs align embeddings / translate concepts
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● Multilingual transfers of semantic graphs align embeddings / translate concepts
● Can we introduce global features to help?

יונק

סוסיכלבי

סוס זברה זאב פנק

Future Work
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Conclusion

● Global reasoning of graph features is beneficial for relation prediction
●
● Works well on top of strong local models
●
● Applicable to large graphs with dozens of relation types     ←    M3GM
●
● Orthogonal of word / synset embedding techniques
●
● Finds a wide variety of linguistic patterns in semantic graphs
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● Computational Linguistics lab 
@Georgia Tech
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● Bloomberg Data Science PhD. 
Fellowship Program
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● Computational Linguistics lab 
@Georgia Tech

● Bloomberg Data Science PhD. 
Fellowship Program

● YOU!
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