Predicting Semantic Relations using Global Graph Properties

Yuval Pinter and Jacob Eisenstein

@yuvalpi

@jacobeisenstein
Georgialinstitute of rechnology

Semantic Graphs

- WordNet-like resources are curated to describe relations between word senses
- The graph is directed
- Edges have form <S, r, T>: <zebra, is-a, equine>
- Still, some relations are symmetric
- Relation types include:
- Hypernym (is-a)
- Meronym (is-part-of)
- Is-instance-of
- Derivational Relatedness

$$
\begin{aligned}
& \text { <zebra, r, equine> } \\
& \text { <tree, r, forest> } \\
& \text { <rome, r, capital> } \\
& \text { <nice, r, nicely> }
\end{aligned}
$$

Semantic Graphs - Relation Prediction

- The task of predicting relations (zebra is a <BLANK>)
- Local models use embeddings-based composition for scoring edges

Semantic Graphs - Relation Prediction

- The task of predicting relations (zebra is a $<B L A N K>$)
- Local models use embeddings-based composition for
scoring edges

Semantic Graphs - Relation Prediction

- The task of predicting relations (zebra is a $<B L A N K>$)
- Local models use embeddings-based composition for scoring edges

Full-Bilinear (Bilin) [Nickel et al. 2011]

Semantic Graphs - Relation Prediction

- The task of predicting relations (zebra is a $<B L A N K>$)
- Local models use embeddings-based composition for scoring edges
- Problem: task-driven method can learn unreasonable graphs

Incorporating a Global View

- We want to avoid unreasonable graphs
- Imposing hard constraints isn't flexible enough
- Only takes care of impossible graphs
- Requires domain knowledge
- We still want the local signal to matter - it's very strong.

Incorporating a Global View

- We want to avoid unreasonable graphs
- Imposing hard constraints isn't flexible enough
- Only takes care of impossible graphs
- Requires domain knowledge
- We still want the local signal to matter - it's very strong.
- Our solution: an additive, learnable global graph score

Score(<zebra, hypernym, equine>| WordNet) =

$$
\mathrm{S}_{\text {locala }}(\mathrm{edge})+\boldsymbol{\Delta}\left(\mathrm{S}_{\text {global }}(\mathrm{WN}+\text { edge }), \mathrm{S}_{\text {global }}(\mathrm{WN})\right)
$$

Global Graph Score

- Based on a framework called Exponential Random Graph Model (ERGM)
- The score Sglobal(WN) is derived from a log-linear distribution across possible graphs that have a fixed number n of nodes

Global Graph Score

- Based on a framework called Exponential Random Graph Model (ERGM)
- The score Sglobal(WN) is derived from a log-linear distribution across possible graphs that have a fixed number n of nodes

- OK. What are the features?

Graph Features (Motifs)

- \#edges: 6
- \#targets: 4
- \#3-cycles: 0
- \#2-paths: 4
- Transitivity: $1 / 4=0.25$

Graph Features (Motifs)

- \#edges: 6
- \#targets: 4
- \#3-cycles: 0
- \#2-paths: 4
- Transitivity: $1 / 4=0.25$

Graph Features (Motifs)

- \#edges: 6
- \#targets: 4
- \#3-cycles: 0
- \#2-paths: 4
- Transitivity: $1 / 4=0.25$

Graph Features (Motifs)

- \#edges: 6
- \#targets: 4
- \#3-cycles: 0
- \#2-paths: 4
- Transitivity: $1 / 4=0.25$

Graph Features (Motifs)

- \#edges: 6
- \#targets: 4
- \#3-cycles: 0
- \#2-paths: 4
- Transitivity: $1 / 4=0.25$

Graph Motifs (multiple relations)

- \#edges: 6
- \#targets: 4
- \#3-cycles: 0
- \#2-paths: 4
- Transitivity: $1 / 4=0.25$

(some) joint blue/orange motifs:
- \#edges \{b, o\}: 9
- \#2-paths (b-b): 4
- \#2-cycles \{b, o\}: 1
- \#2-paths (b-o): 3
- \#3-cycles (b-o-o): 1
- \#2-paths (o-b): 4
- \#3-cycles (b-b-o): 0
- Transitivity (b-o-b): 2/3 $=0.67$

Graph Motifs (multiple relations)

- \#edges: 6
- \#targets: 4
- \#3-cycles: 0
- \#2-paths: 4
- Transitivity: $1 / 4=0.25$

(some) joint blue/orange motifs:
- \#edges \{b, o\}: 9
- \#2-paths (b-b): 4
- \#2-cycles \{b, o\}: 1
- \#2-paths (b-o): 3
- \#3-cycles (b-o-o): 1
- \#2-paths (o-b): 4
- \#3-cycles (b-b-o): 0
- Transitivity (b-o-b): 2/3 $=0.67$

Graph Motifs (multiple relations)

- \#edges: 6
- \#targets: 4
- \#3-cycles: 0
- \#2-paths: 4
- Transitivity: $1 / 4=0.25$

(some) joint blue/orange motifs:
- \#edges \{b, o\}: 9
- \#2-paths (b-b): 4
- \#2-cycles \{b, o\}: 1
- \#2-paths (b-o): 3
- \#3-cycles (b-o-o): 1
- \#2-paths (o-b): 4
- \#3-cycles (b-b-o): 0
- Transitivity (b-o-b): 2/3 $=0.67$

Graph Motifs (multiple relations)

- \#edges: 6
- \#targets: 4
- \#3-cycles: 0
- \#2-paths: 4
- Transitivity: $1 / 4=0.25$

(some) joint blue/orange motifs:
- \#edges \{b, o\}: 9
- \#2-paths (b-b): 4
- \#2-cycles \{b, o\}: 1
- \#2-paths (b-o): 3
- \#3-cycles (b-o-o): 1
- \#2-paths (o-b): 4
- \#3-cycles (b-b-o): 0
- Transitivity (b-o-b): 2/3 $=0.67$

ERGM Training

- Estimating the scores for all possible graphs to obtain a probability distribution is implausible
- Number of possible directed graphs with \mathbf{n} nodes: $\mathbf{O}\left(\exp \left(\mathrm{n}^{2}\right)\right)$
- \mathbf{n} nodes, \mathbf{R} relations: $\mathbf{O}\left(\exp \left(\mathbf{R}^{*} \mathbf{n}^{2}\right)\right)$
- Estimation begins to be hard at ${ }^{\sim} \mathbf{n}=100$ for $\mathbf{R}=1$. In WordNet: $\mathbf{n}=40 K, \mathbf{R}=11$.

ERGM Training

- Estimating the scores for all possible graphs to obtain a probability distribution is implausible
- Number of possible directed graphs with \mathbf{n} nodes: $\mathbf{O}\left(\exp \left(\mathrm{n}^{2}\right)\right)$
- \mathbf{n} nodes, \mathbf{R} relations: $\mathbf{O}\left(\exp \left(\mathbf{R}^{*} \mathbf{n}^{2}\right)\right)$
- Estimation begins to be hard at ${ }^{\sim} \mathbf{n}=100$ for $\mathbf{R}=1$. In WordNet: $\mathbf{n}=40 K, \mathbf{R}=11$.
- Unlike other structured problems, there's no known dynamic programming algorithm either

ERGM Training

- Estimating the scores for all possible graphs to obtain a probability distribution is implausible
- Number of possible directed graphs with \mathbf{n} nodes: $\mathbf{O}\left(\exp \left(\mathrm{n}^{2}\right)\right)$
- \mathbf{n} nodes, \mathbf{R} relations: $\mathbf{O}\left(\exp \left(\mathbf{R}^{*} \mathbf{n}^{2}\right)\right)$
- Estimation begins to be hard at ${ }^{\sim} \mathbf{n}=100$ for $\mathbf{R}=1$. In WordNet: $\mathbf{n}=40 \mathrm{~K}, \mathbf{R}=11$.
- Unlike other structured problems, there's no known dynamic programming algorithm either

What can we do?

- Decompose score over dyads (node pairs) in graph
- Draw and score negative sample graphs

Max-Margin Markov Graph Model (M3GM)

- Sample negative graphs from the "local
neighborhood" of the true WN

Max-Margin Markov Graph Model (M3GM)

- Sample negative graphs from the "local neighborhood" of the true WN

Max-Margin Markov Graph Model (M3GM)

- Sample negative graphs from the "local neighborhood" of the true WN

Max-Margin Markov Graph Model (M3GM)

- Sample negative graphs from the "local neighborhood" of the true WN

Max-Margin Markov Graph Model (M3GM)

- Sample negative graphs from the "local neighborhood" of the true WN
- Loss $=$ Max $\{0,1+$ score(negative sample)
- score(WN)\}

Max-Margin Markov Graph Model (M3GM)

- It's important to choose an appropriate proposal distribution (source of the negative samples)

Max-Margin Markov Graph Model (M3GM)

- It's important to choose an appropriate proposal distribution (source of the negative samples)
- We want to make things hard for the scorer

Evaluation

- Dataset - WN18RR
- No reciprocal relations (hypernym \Leftrightarrow hyponym)
- Still includes symmetric relations
- Metrics - MRR, H@10
- Rule baseline - take symmetric if exists in train
- Used in all models as default for symmetric relations
- Local models
- Synset embeddings - averaged from FastText
- M3GM (re-rank top 100 from local)
- ~3000 motifs, ~900 non-zero

Evaluation

- Dataset - WN18RR
- No reciprocal relations (hypernym \Leftrightarrow hyponym)
- Still includes symmetric relations
- Metrics - MRR, H@10
- Rule baseline - take symmetric if exists in train
- Used in all models as default for symmetric relations
- Local models
- Synset embeddings - averaged from FastText
- M3GM (re-rank top 100 from local)
- ~3000 motifs, ~900 non-zero

Evaluation

- Dataset - WN18RR
- No reciprocal relations (hypernym \Leftrightarrow hyponym)
- Still includes symmetric relations
- Metrics - MRR, H@10

- Rule baseline - take symmetric if exists in train
- Used in all models as default for symmetric relations
- Local models
- Synset embeddings - averaged from FastText
- M3GM (re-rank top 100 from local)
- ~ 3000 motifs, ~900 non-zero

Relation Prediction (WN18RR)

Feature Analysis

- Motifs with heavy positive weights:
- Targets of has_part
- Two-paths hypernym \rightarrow derivationally_related_form
- Motifs with heavy negative weights:
- Targets of hypernym
- Two-cycles of hypernym
- Target of both has_part and verb_group

Feature Analysis

- Motifs with heavy positive weights:
- Targets of has_part
- Two-paths hypernym \rightarrow derivationally_related_form
- Motifs with heavy negative weights:
- Targets of hypernym
- Two-cycles of hypernym
- Target of both has_part and verb_group

\longrightarrow Seen in training data
\longrightarrow Local-only prediction
- :-> M3GM prediction
....> Unseen in data

Feature Analysis

- Motifs with heavy positive weights:
- Targets of has_part
- Two-paths hypernym \rightarrow derivationally_related_form
- Motifs with heavy negative weights:
- Targets of hypernym
- Two-cycles of hypernym
- Target of both has_part and verb_group

\longrightarrow Seen in training data
\longrightarrow Local-only prediction
- :-> M3GM prediction

Feature Analysis

- Motifs with heavy positive weights:
- Targets of has_part
- Two-paths hypernym \rightarrow derivationally_related_form
- Motifs with heavy negative weights:
- Targets of hypernym
- Two-cycles of hypernym
- Target of both has_part and verb_group

Feature Analysis

- Motifs with heavy positive weights:
- Targets of has_part
- Two-paths hypernym \rightarrow derivationally_related_form
- Motifs with heavy negative weights:
- Targets of hypernym
- Two-cycles of hypernym
- Target of both has_part and verb_group

"Derivations occur in the abstract parts of the graph"

(bodega / canteen vs. shop)

\longrightarrow Hypernym
$<\cdots>$ Deriv. Related form

Feature Analysis

- Motifs with heavy positive weights:
- Targets of has_part
- Two-paths hypernym \rightarrow derivationally_related_form
- Motifs with heavy negative weights:
- Targets of hypernym
- Two-cycles of hypernym
- Target of both has_part and verb_group

Future Work

- Multilingual transfers of semantic graphs

Future Work

- Multilingual transfers of semantic graphs align embeddings / translate concepts

Future Work

- Multilingual transfers of semantic graphs align embeddings / translate concepts
- Can we introduce global features to help?

Conclusion

- Global reasoning of graph features is beneficial for relation prediction
- Works well on top of strong local models
- Applicable to large graphs with dozens of relation types \leftarrow M3GM
- Orthogonal of word / synset embedding techniques
- Finds a wide variety of linguistic patterns in semantic graphs

Thanks

- Computational Linguistics lab @Georgia Tech

code + bonus WordNet analysis tools:
github.com/yuvalpinter/m3gm
contact: uvp@gatech.edu

Thanks

- Computational Linguistics lab @Georgia Tech

- Bloomberg Data Science PhD. Fellowship Program

Bloomberg

code + bonus WordNet analysis tools:
github.com/yuvalpinter/m3gm
contact: uvp@gatech.edu

Thanks

- Computational Linguistics lab @Georgia Tech

- Bloomberg Data Science PhD. Fellowship Program

Bloomberg

- YOU!

code + bonus WordNet analysis tools:
github.com/yuvalpinter/m3gm contact: uvp@gatech.edu

