
Supplementary Materials: On Tree-Based Neural Sentence Modeling

Haoyue Shi †,‡ Hao Zhou‡ Jiaze Chen‡ Lei Li‡
†: School of EECS, Peking University, Beijing, China

hyshi@pku.edu.cn
‡: ByteDance AI Lab, Beijing, China

{zhouhao.nlp, chenjiaze, lileilab}@bytedance.com

1 Implementation Details

Our codebase is built on PyTorch 0.3.0.1 All the
sentences was tokenized with SpaCy.2

1.1 Sentence Encoding
We use LSTM based sentence encodings as the
extracted features of sentences for downstream
classification or generation tasks. We use typi-
cal long short term memory (LSTM; Hochreiter
and Schmidhuber, 1997) units for linear struc-
tures, which can be summarized as:

ft = σ(Wf · [ht−1,xt] + bf )

it = σ(Wi · [ht−1,xt] + bi)

c̃t = tanh(Wc · [ht−1,xt] + bc)

ot = σ(Wo · [ht−1,xt] + bo)

ct = ftct−1 + itc̃t

ht = ot tanh(ct)

where t indicates the time step of a state; ht is
the hidden state and xt is the input vector. We
apply binary tree LSTM units adapted from Zhu
et al. (2015) for binary tree LSTMs, which can be
summarized as:

fl = σ(Wl · [hl,hr] + bl)

fr = σ(Wr · [hl,hr] + br)

it = σ(Wi · [hl,hr] + bi)

c̃t = tanh(Wc · [hl,hr] + bc)

ot = σ(Wo · [ht−1,xt] + bo)

ct = flcl + frcr + itc̃t

ht = ot tanh(ct)

where the subscript t denotes the current state,
and l, r denote the left and right child states re-
spectively. We also apply LSTM (Hochreiter and

1https://pytorch.org/docs/0.3.0
2https://spacy.io

Schmidhuber, 1997) as leaf-node RNN when nec-
essary.

It is worth noting that left-branching tree LSTM
without leaf-node RNN is structurally equivalent
to unidirectional LSTM. The only difference be-
tween them, which may cause the slight difference
on performance, comes from the implementation
of LSTM units.

The candidate set of dropout ratio we explore
for the task of word-level semantic relation (WSR)
is {0, 0.1, 0.15, 0.2, 0.3, 0.5}.

1.2 Sentence Relation Classification
In the task of sentence relation classification, the
feature vector consists of the concatenation of
two sentence vectors, their difference, and their
element-wise product (Mou et al., 2016):

z =


s1

s2

s1 − s2

s1 � s2


1.3 Pooling Mechanism
Following (Socher et al., 2011), we apply pooling
mechanism to all leaf states (of tree LSTMs) and
hidden states. The detailed pooling methods are
described as follows.

Max Pooling. Max pooling takes the max value
for each dimension

H = (h1,h2, · · · ,hm)

si =
m

max
j=1

hj,i i = 1, 2, · · · , d

s = (s1, s2, · · · , sd)T

where hi denotes a leaf state in tree LSTMs or a
hidden state;m = 2n−1 for tree LSTMs andm =
n for linear LSTMs; s denotes the final sentence
encoding.

https://pytorch.org/docs/0.3.0


Mean Pooling. Mean pooling (average pooling)
takes the average of all hidden states as the sen-
tence representation, which can be summarized as:

H = (h1,h2, · · · ,hm)

s =
1

m

m∑
i=1

hi

Self-Attention. We follow Conneau et al. (2017)
and Lin et al. (2017) to build a self-attentive mech-
anism, which can be summarized as:

H = (h1,h2, · · · ,hm)
a = softmax(wT

β tanh(WαH))

s = HaT

where a denotes attention weights computed by
learned parameters Wα and wβ . In all experi-
ments, wβ is a 128-d vector.

References
Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c

Barrault, and Antoine Bordes. 2017. Supervised
Learning of Universal Sentence Representations
from Natural Language Inference Data. In Proc. of
EMNLP.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
Short-Term Memory. Neural Computation.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A Structured Self-Attentive Sentence
Embedding. In Proc. of ICLR.

Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan,
and Zhi Jin. 2016. Natural language inference by
tree-based convolution and heuristic matching. In
Proc. of ACL.

Richard Socher, Eric H. Huang, Jeffrey Pennington,
Christopher D. Manning, and Andrew Y. Ng. 2011.
Dynamic Pooling and Unfolding Recursive Autoen-
coders for Paraphrase Detection. In Proc. of NIPS.

Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo.
2015. Long Short-Term Memory Over Recursive
Structures. In Proc. of ICML.


