
A Appendix

A.1 Algorithm
Here we list two simple algorithms for making
balanced binary trees on the target sentence. For
our experiments of TrDec on binary trees, we use
both algorithms to produce two versions of binary
tree for each training sentence, and concatenate
them as a form of data augmentation strategy.

Algorithm 1: The first method of making bal-
anced binary tree

Input :w: the list of words in a sentence, l: start index,
r: end index

Output :a balanced binary tree for words from l to r in
w

1 Function make_tree_v1(w, l, r):
2 if l = r then
3 return TerminalNode(w[l])
4 end
5
6 m = floor((l + r)/2) . index of split point
7 left_tree = make_tree_v1(w, l,m)
8 right_tree = make_tree_v1(w,m+ 1, r)
9

10 return NonTerminalNode(left_tree, right_tree)

Algorithm 2: The second method of making
balanced binary tree

Input :w: the list of words in a sentence, l: start index,
r: end index (inclusive)

Output :a balanced binary tree for words from l to r in
w

1 Function make_tree_v2(w, l, r):
2 nodes = EmptyList()
3 i = 0
4 while i < len(w)� 1 do
5 lc = TerminalNode(w[i])
6 rc = TerminalNode(w[i+ 1])
7 n = NonTerminalNode(lc, rc)
8 nodes.append(n)
9 i = i+ 2

10 end
11
12 if i 6= len(w) then
13 n = TerminalNode(w[i])
14 nodes.append(n)
15 end
16
17 return make_tree_v1(nodes, 0, len(nodes)� 1)


