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A Comparison of Generative and
Discriminative Classifiers

To indicate we have built a strong baseline, we
first compare our implementation of the generative
and discriminative classifiers to prior work. Note
that here we use the whole training set without any
truncation on the sequence length.

Table 1 shows that our standard generative and
discriminative LSTM models are comparable with
Yogatama et al. (2017). All other well-performing
models listed in the table are discriminatve models
that use more complex modeling methods such as
attention to boost performance. Since the focus of
our paper is the impact of adding latent variables
to generative models, we do not use more complex
techniques when building our baselines.

Our results show that our standard generative
and discriminative LSTM models are comparable
with Yogatama et al. (2017). We also see that the
generative models have lower classification accu-
racies with the full training set, which agrees with
the findings in the prior work.

B More Details about Learning with
Expectation-Maximization

EM provides a general purpose local search al-
gorithm for learning parameters in probabilistic
models with latent variables, and it has been
widely used in much prior work and has shown
its efficacy in terms of convergence (Ruder et al.,
2018; Neal and Hinton, 1998; Dempster et al.,
1977).

Salakhutdinov et al. (2003) theoretically study
the close relationship between EM and direct op-
timization approaches with gradient-based meth-
ods. Here we empirically characterize the perfor-
mance of our auxiliary latent generative classifiers
with different training methods, namely EM and
stochastic gradient descent (SGD) (Bottou, 2010)

for direct optimization.
For our latent generative classifiers, the Expec-

tation (E) step computes the posterior distributions
over the latent variable:

p̂(c | x, y)← p(x, y, c)∑
c′∈C p(x, y, c

′)

The Maximization (M) step seeks to find new pa-
rameter estimates by maximizing the following:∑

〈x,y〉∈D

∑
c∈C

p̂(c | x, y) log p(x, y, c)

C Alternative Inference Criteria

The classification accuracies of the auxiliary la-
tent generative model in the main text are based
on predictions made while marginalizing out the
latent variable. In addition, we experiment with
two other inference objectives. One uses the pos-
terior p(c | x, y) instead of the learned prior pΦ(c)
during marginalization:

ŷ = argmax
y∈Y

∑
c∈C

pΘ(x | c, y)p(c | x, y)pΨ(y)

The other way is to predict by maximizing the la-
tent variable:

ŷ = argmax
y∈Y

max
c∈C

pΘ(x | c, y)pΦ(c)pΨ(y)

We find very similar performance with all three in-
ference criteria, which agrees with our observation
that the classifiers learn peaked prior and posterior
distributions over the discrete latent variables.

D Additional Results with Training Sizes

While the main paper contained these results in
plots, for completeness we provide the numer-
ical classification accuracies of the discrimina-
tive (Disc.), generative (Gen.), and latent-variable
generative (Lat.) classifiers trained with various
training sizes in Tables 2, 3, 4, 5, 6, and 7.



models Yelp P Yelp F AGNews Sogou Yahoo DBpedia
generative classifier (ours, shared-LSTM) 92.61 57.36 89.88 89.57 68.87 96.46
discriminative classifier (ours) 96.37 65.81 90.09 96.43 73.10 98.78
gen LSTM-shared (Yogatama et al., 2017) 88.20 52.70 90.60 90.30 69.30 95.40
gen LSTM-independent (Yogatama et al., 2017) 90.00 51.90 90.70 93.50 70.50 94.80
disc model (Yogatama et al., 2017) 92.60 59.60 92.10 94.90 73.70 98.70
bag of words (Zhang et al., 2015) 92.20 58.00 88.80 92.90 68.90 96.60
fastText (Joulin et al., 2017) 95.70 63.90 92.50 96.80 72.30 98.60
char-CRNN (Xiao and Cho, 2016) 94.50 61.80 91.40 95.20 71.70 98.60
very deep CNN (Conneau et al., 2017) 95.70 64.70 91.30 96.80 73.40 98.70

Table 1: Summary of the results on the full datasets. Our implementation of the generative model share parameters
among classes.

# per class Disc. Gen. Lat.
5 61.97 55.42 62.53

20 64.19 59.06 66.67
100 66.72 69.80 73.50
1k 77.53 78.62 81.22
2k 80.48 80.98 82.96
5k 82.62 83.60 84.97
10k 85.83 85.41 85.65
all 92.20 87.51 87.38

Table 2: Comparison of classification accuracy on Yelp
Review Polarity dataset.

# per class Disc. Gen. Lat.
5 23.38 21.67 27.16

20 25.12 26.20 31.78
100 29.82 35.87 38.67
1k 42.85 43.36 46.05
2k 46.09 44.16 48.58
5k 52.23 47.75 49.86
10k 52.23 50.30 50.19
all 59.00 52.34 51.14

Table 3: Comparison of classification accuracy on Yelp
Review Full dataset.

E Dataset Description

We present our results on six publicly available
text classification datasets introduced by Zhang
et al. (2015), which include news categorization,
sentiment analysis, question/answer topic classifi-
cation, and article ontology classification. Dataset
names and statistics are shown in Table 8. For each
dataset, we randomly pick 5000 instances from the
training set as the development set.

F Total Number of Parameters

Table 9 shows the hyperparameter settings for our
classifiers. There are various choices of latent
variable values and dimensionalities. We select
the ones with the best classification accuracy ac-
cording to the development sets.

Table 10 lists the number of parameters in each

# per class Disc. Gen. Lat.
5 40.20 35.12 47.46

20 43.68 37.86 61.45
100 62.58 68.70 78.58
1k 78.08 84.08 86.12
2k 80.80 86.70 87.25
5k 84.87 88.88 89.26

10k 87.25 89.67 89.63
all 89.79 90.00 90.14

Table 4: Comparison of classification accuracy on AG
News dataset.

# per class Disc. Gen. Lat.
5 41.75 39.89 61.19

20 52.80 66.32 72.18
100 69.18 77.88 81.48
1k 83.83 84.81 86.40
2k 85.04 86.50 86.61
5k 87.90 87.42 86.62

10k 89.94 87.67 86.81
all 93.40 87.95 86.95

Table 5: Comparison of classification accuracy on So-
gou dataset.

classifier. It is related to the discussion about ef-
fect of latent structure in the main paper. We cre-
ated Gen. PC and Lat. PC to demonstrate that the
performance gains are due to the latent-variable
structure instead of an increased number of param-
eters when adding the latent variables.

G Results with Larger Models

We increase the model capacity by increasing di-
mensionality of the word embedding, LSTM hid-
den embedding, and label embedding to 200 and
refer to the resulting models as the large discrim-
inative (Disc L.), generative (Gen L.), and latent-
variable generative (Lat L.) classifiers. Note that
we did not change the number of values or dimen-
sionality of the latent variables. We only exper-
imented with two datasets due to GPU memory



# per class Disc. Gen. Lat.
5 13.26 15.39 21.00

20 19.98 30.33 36.55
100 29.97 47.33 50.04
1k 55.15 62.68 64.18
2k 60.83 65.52 65.70
5k 66.07 67.95 67.79
10k 69.00 68.90 67.92
all 72.70 69.14 68.02

Table 6: Comparison of classification accuracy on Ya-
hoo dataset.

# per class Disc. Gen. Lat.
5 32.27 63.02 66.33

20 43.72 82.17 85.56
100 74.73 90.37 92.24
1k 96.11 94.62 95.54
2k 96.85 95.06 95.75
5k 97.76 95.78 96.09
10k 98.15 96.29 96.30
all 98.70 96.73 96.25

Table 7: Comparison of classification accuracy on DB-
pedia dataset.

limits.1 Table 11 shows the performance compar-
ison between standard (reported in the main pa-
per) and larger classifiers. We find that the trend
Disc L. < Gen L. < Lat L. still holds in most
cases in the small-data setting, though the perfor-
mance gaps shrink as the capacity increases.
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word embedding hidden state label embedding # latent variable values latent embedding
Disc. 100 100 100 - -
Gen. 100 100 100 - -
Lat. 100 100 100 10, 30, 50 10, 50, 100

Gen. PC 100 100 110 - -
Lat. PC 100 100 100 10 10

Table 9: Hyperparameter settings of Discriminative (Disc.), Generative (Gen.), Latent Generative (Lat.), Genera-
tive PC (Gen. PC), Latent Generative PC (Lat. PC) classifiers. PC stands for “Parameter-comparison Configura-
tion.” More description can be found in the main paper.

Dataset # per class Disc. Gen. Lat. Gen. PC Lat. PC

Yelp P

5

4,082,414 12,642,828

16,122,903

12,481,640 12,521,733
20 14,123,253
100 14,123,253
1k 14,123,253
all 16,122,903

Yelp F

5

4,082,414 12,642,828

12,522,233

12,481,640 12,521,733
20 12,522,233
100 12,522,233
1k 12,522,233
all 14,122,553

AGNews

5

4,082,414 12,642,828

11,430,985

10,104,780 10,137,185
20 10,137,185
100 11,430,985
1k 10,137,585
all 12,522,333

Sogou

5

4,082,414 12,642,828

13,162,568

11,634,120 11,671,448
20 13,163,568
100 15,028,468
1k 11,676,935
all 12,522,233

Yahoo

5

4,082,414 12,642,828

12,522,533

12,482,520 12,522,533
20 14,124,053
100 12,522,733
1k 12,522,533
all 16,123,703

DBpedia

5

4,082,414 12,642,828

12,522,933

12,482,960 12,522,933
20 14,124,453
100 14,124,453
1k 16,126,103
all 12,522,933

Table 10: Number of parameters in each classifier.

# per class Disc L. Gen L. Lat L. Disc. Gen. Lat.

AGNews

5 37.34 40.55 47.91 40.20 35.12 47.46
20 44.53 47.42 62.36 43.68 37.86 61.45

100 62.74 76.95 79.63 62.58 68.70 78.58
1k 80.67 84.82 86.79 78.08 84.08 86.12
all 90.54 90.16 89.68 89.79 90.00 90.14

Yelp Polarity

5 60.82 60.65 63.07 61.97 55.42 62.53
20 61.11 64.44 67.50 64.19 59.06 66.67

100 68.55 71.79 74.37 66.72 69.80 73.50
1k 77.93 78.91 81.82 77.53 78.62 81.22
all 92.48 87.76 87.34 92.20 87.51 87.38

Table 11: Comparision of classification accuracies between standard and larger classifiers.


