
Appendix to
Help, Anna! Visual Navigation with Natural Multimodal Assistance via

Retrospective Curiosity-Encouraging Imitation Learning

Acknowledgement

We would like to thank Debadeepta Dey for help-
ful discussions. We thank Jesse Thomason for the
thorough review and suggestions on related work
and future directions. Many thanks to the review-
ers for their meticulous and insightful comments.
Special thanks to Reviewer 2 for addressing our
author response in detail, and to Reviewer 3 for the
helpful suggestions and the careful typing-error
correction.

A Proof of Lemma 1

Lemma 1. To guide the agent between any two
locations using O(logN) instructions, we need
to collect instructions for Θ(N logN) location
pairs.

Proof. Consider a spanning tree of the environ-
ment graph that is rooted at vr. For each node
v, let d(v) be the distance from v to vr. For
i = 0 · · · blog2 d(v)c − 1, collect an instruction
for the path from v to its 2i-th ancestor, and an
instruction for the reverse path. In total, no more
than 2 ·N log2N = Θ(N logN) instructions are
collected.

A language-assisted path is a path that is associ-
ated with a natural language instruction. It is easy
to show that, under this construction, O(logN)
language-assisted paths are sufficient to traverse
between v and any ancestor of v as follows. For
any two arbitrary nodes u and v, let w be their
least common ancestor. To traverse from u to
v, we first go from u to w, then from w to v.
The total number of language-assisted path is still
O(logN).

B Proof of Lemma 2

Lemma 2. At any time step, the retrospective
help-request teacher suggests the action that re-

sults in the agent getting closer to the target lo-
cation in the future under its current navigation
policy (if such an action exists).

The retrospective mode of interaction allows the
teacher to observe the agent’s full trajectory when
computing the reference actions. Note that this
trajectory is generated by the agent’s own naviga-
tion policy (π̂nav) because, during training, we use
the agent’s own policies to act. During a time step,
after observing the future trajectory, the teacher
determines whether the lost condition is satis-
fied or not, i.e. whether the agent will get closer to
the target location or not.

1. If condition is not met, the teacher suggests
the do nothing action: it is observed that
the agent will get closer the target location
without requesting help by following the cur-
rent navigation policy.

2. If condition is met, the teacher suggests the
request help action. First of all, in this
case, it is observed that the do nothing ac-
tion will lead to no progress toward the target
location. If the request help action will
also lead to no progress, then it does not mat-
ter which action the teacher suggests. In con-
trast, if the request help action will help
the agent get closer to the target location, the
teacher has suggested the desired action.

C Features

At time step t, the model makes use of the follow-
ing features:
� Icur

t : set of visual feature vectors representing
the current panoramic view;
� I tgt

t : set of visual feature vectors representing
the target location’s panoramic view;
� at−1: embedding of the last action;
� δt: a vector representing how similar the tar-

get view is to the current view;

� ηloc
t : local-time embedding encoding the

number of time steps since the last time the
inter-task module was reset;
� ηglob

t : global-time embedding encoding the
number time steps since the beginning of the
episode;
� P nav

t : the navigation action distribution out-
put by π̂nav. Each action corresponding to a
view angle is mapped to a static index to en-
sure that the order of the actions is indepen-
dent of the view angle. This feature is only
used by the help-request network.

Visual features. To embed the first-person view
images, we use the visual feature vectors provided
Anderson et al. (2018), which are extracted from
a ResNet-152 (He et al., 2016) pretrained on Im-
ageNet (Russakovsky et al., 2015). Following
the Speaker-Follower model (Fried et al., 2018),
at time step t, we provide the agent with a fea-
ture set Icur

t representing the current panoramic
view. The set consists of visual feature vectors
that represent all 36 possible first-person view an-
gles (12 headings × 3 elevations). Similarly, the
panoramic view at the target location is given by
a feature set I tgt

t . Each next location is asso-
ciated with a view angle whose center is clos-
est to it (in angular distance). The embedding
of a navigation action (v,∆ψ,∆ω) is constructed
by concatenating the feature vector of the corre-
sponding view and an orientation feature vector
[sin ∆ψ; cos ∆ψ; sin ∆ω; sin ∆ω] where ∆ψ and
∆ω are the camera angle change needed to shift
from the current view to the view associated with
v. The stop action is mapped to a zero vector.
The action embedding set Enav

t contains embed-
dings of all navigation actions at time step t.

Target similarity features. The vector δ repre-
sents the similarity between Icur and I tgt. To com-
pute this vector, we first construct a matrix C,
where Ci,j is the cosine similarity between Icur

i

and I tgt
j . δt is then obtained by taking the max-

imum values of the rows of C. The intuition is,
for each current view angle, we find the most sim-
ilar target view angle. If the current view perfectly
matches with the target view, δt is a vector of ones.

Time features. The local-time embedding is
computed by a residual neural network (He et al.,
2016) that learns a time-incrementing operator

ηloc
t = INCTIME

(
ηloc
t−1

)
(1)

where INCTIME(x) = LAYERNORM(x +
RELU(LINEAR(x))). The global-time embedding
is computed similarly but also incorporates the
current local-time

η
glob
t = INCTIME

([
ηloc
t ; η

glob
t−1

])
(2)

The linear layers of the local and global time mod-
ules do not share parameters. Our learned time
features generalizes to previously unseen numbers
of steps. They allow us to evaluate the agent on
longer episodes than during training, significantly
reducing training cost. We use the sinusoid encod-
ing (Vaswani et al., 2017) for the text-encoding
module, and the ResNet-based encoding for the
decoder modules. In our preliminary experiments,
we also experimented using the sinusoid encoding
in all modules but doing so significantly degraded
success rate.

D Model

Modules. The building blocks of our architec-
ture are the Transformer modules (Vaswani et al.,
2017)
� TRANSENCODER(l) is a Transformer-style

encoder, which generates a set of feature vec-
tors representing an input sequence l;
� MULTIATTEND(q,K, V) is a multi-headed

attention layer that takes as input a query vec-
tor q, a set of key vectors V , and a set of
value vectors V . The output is added a resid-
ual connection (He et al., 2016) and is layer-
normalized (Lei Ba et al., 2016).
� FFN(x) is a Transformer-style feed-forward

layer, which consists of a regular feed-
forward layer with a hidden layer and the
RELU activation function, followed by a
residual connection and layer normalization.
The hidden size of the feed-forward layer is
four times larger than the input/output size.

In addition, we devise the following new atten-
tion modules
� SELFATTEND(q,K, V) implements a multi-

headed attention layer internally. It calculates
an output h = MULTIATTEND(q,K, V). Af-
ter that, the input q and output h are appended
to K and V , respectively. This module is dif-
ferent from the Transformer’s self-attention
in that the keys and values are distinct.
� SIMATTEND(q,K, V) computes a weighted

value h =
∑

i ãiVi where each weight ãi is

Hyperparameter Value

Common
Hidden size 256
Navigation action embedding size 256
Help-requesting action embedding size 128
Word embedding size 256
Number of self-attention heads 8
Number of instruction-attention heads 8
ResNet-extracted visual feature size 2048

Help-request teacher
Uncertainty threshold (γ) 0.25

Training
Optimizer Adam
Number of training iterations 3× 104

Learning rate 10−4

Batch size 32
Dropout ratio 0.3
Training time steps 20
Maximum instruction length 50
Curiosity-encouraging weight (α) 1.0(∗)

Evaluation
Success radius (εsuccess) 2 meters
Attention radius (εattn) 2 meters
Evaluation time steps 50

Table 1: Hyperparameters. (*) Training collapses when
usingα = 1 to train the agent with the help-request pol-
icy baselines (NOASK, RANDOMASK, ASKEVERY5).
Instead, we use α = 0.5 in those experiments.

defined as

ãi = I{ai > 0.9} ai∑
j aj

(3)

ai = COSINESIMILARITY(q,Ki) (4)

where COSINESIMILARITY(., .) returns the
cosine similarity between two vectors, and
I{.} is an indicator function. Intuitively, this
module finds keys that are nearly identical
to the query and returns the weighted aver-
age of values corresponding to those keys.
We use this module to obtain a representation
of related past, which is crucial to enforcing
curiosity-encouraging training.

We now describe the navigation network in de-
tail. For notation brevity, we omit the nav super-
scripts in all variables.

Text-encoding component. The agent main-
tains a text memoryM text, which stores the hidden
representation of the current language instruction
lt. At the beginning of time, the agent encodes
the task request to generate an initial text mem-
ory. During time step t, if the current task is al-
tered (due to the agent requesting help or depart-
ing a route), the agent encodes the new language

instruction to generate a new text memory

M text = TRANSENCODER(lt) (5)

if lt 6= lt−1 or t = 0

Inter-task component. The inter-task module
computes a vector hinter

t representing the state of
the current task’s execution. This state and the lo-
cal time embedding are reset to zero vectors every
time the agent switches task1. Otherwise, a new
state is computed as follows

hinter
t = SELFATTEND(qinter

t ,M inter
in ,M inter

out) (6)

qinter
t = Winter[c

inter
t ; at−1; δt] + ηloc

t (7)

cinter
t = DOTATTEND(hinter

t−1 , I
cur
t) (8)

where M inter
in = {qinter

0 , · · · , qinter
t−1} and M inter

in =
{hinter

0 , · · · , hinter
t−1} are the input and output inter-

task memories, and DOTATTEND(q,M) is the
dot-product attention (Luong et al., 2015).

Next, hinter
t is used to select which part of the

language instruction should be interpreted in this
step

ctext
t = FFN

(
c̃text) (9)

c̃text = MULTIATTEND(hinter
t ,M text

t ,M text
t)

(10)

Finally, ctext
t is used to select which areas of the

current view and target view the agent should fo-
cus on

ccur
t = DOTATTEND(ctext

t , Icur
t) (11)

c
tgt
t = DOTATTEND(ctext

t , I
tgt
t) (12)

Intra-task component. The inter-task module
computes a vector hintra

t representing the state of
the entire episode. To compute this state, we first
calculate h̄intra

t , a tentative current state, and h̃intra
t ,

a weighted combination of the past states at nearly
identical situations

h̄intra
t = FFN

(
SELFATTEND(qintra

t ,M intra
in ,M intra

out)
)

(13)

h̃intra
t = SIMATTEND(qintra

t ,M intra
in ,M intra

out) (14)

qintra
t = Wintra

[
ctext
t ; ccur

t ; c
tgt
t ; δt

]
+ η

glob
t (15)

1In practice, every time we reset the state and the local
time embedding in an episode, we also reset all states and
local time embeddings in all episodes in the same batch.

18%

82%

Do nothing
Request help

(a)

36.1

21.7

26

10

32.6

26.6

0

10

20

30

40

50

lost uncertain_wrong already_asked

Condition for requesting help
Pe

rc
en

ta
ge

 (%
)

Predicted
True

(b)

Figure 1: Help-request behavior on TEST UN-
SEENALL: (a) fraction of time steps where the agent re-
quests help and (b) predicted and true condition distri-
butions. The already asked condition is the nega-
tion of the never asked condition.

where M intra
in = {qintra

0 , · · · , qintra
t−1} and M intra

in =
{hintra

0 , · · · , hintra
t−1} are the input and output intra-

task memories. The final state is determined by
subtracting a scaled version of h̃intra

t from h̄intra
t

hintra
t = h̄intra

t − β · h̃intra
t (16)

β = σ(Wgate · [h̄intra
t ; h̃intra

t]) (17)

Finally, the navigation action distribution is com-
puted as follows

P nav
t = SOFTMAX(W out hintra

t W act Enav
t)) (18)

where Enav
t is a matrix containing embeddings of

the navigation actions. The computations in the
help-request network is almost identical except
that (a) the navigation action distribution P nav

t is
fed as an extra input to the intra-task components
(15), and (b) the help-request and reason distribu-
tions are calculated as follows

P ask
t = SOFTMAX(Eask

t Ereason
t hask,intra

t) (19)

P reason
t = SOFTMAX(Ereason

t hask,intra
t) (20)

where Eask
t contains embeddings of the help-

request actions and Ereason
t contains embeddings

of the reason labels.

E Hyperparameters

Table 1 summarizes all training and evaluation hy-
perparameters. Training our agent takes approxi-
mately 9 hours on a single Titan Xp GPU.

F Analysis

Ablation Study. Table 2 shows an ablation study
on the techniques we propose in this paper. We

57.7

46.2

76.975.5

48

33.2

86.6
81.3

52.3
47.5

58.1

71.8

0

25

50

75

100

lost uncertain_wrong already_asked

Condition for requesting help

Pe
rc

en
ta

ge
 (%

)

Accuracy
Precision
Recall
F−1

Figure 2: Accuracy, precision, recall, and F-1 scores
in predicting the help-request conditions on TEST UN-
SEENALL. The already asked condition is the
negation of the never asked condition.

observe the performance on VAL SEENENV of the
model trained without the curiosity-encouraging
loss (α = 0) is slightly higher than that of
our final model, indicating that training with the
curiosity-encouraging loss slightly hurts memo-
rization. This is expected because the model has
relatively small size but has to devote part of its
parameters to learn the curiosity-encouraging be-
havior. On the other hand, optimizing with the
curiosity-encouraging loss helps our agent gen-
eralize better to unseen environments. Predict-
ing help-request conditions produces contrasting
effects on the agent in seen and unseen environ-
ments, boosting performance in VAL SEENENV

while slightly degrading performance in VAL UN-
SEENALL. We investigate the help-request pat-
terns and find that, in both types of environments,
the agent makes significantly more requests when
not learning to predict the conditions. Specif-
ically, the no-condition-prediction agent meets
the uncertain wrong condition considerably
more often (+5.2% on VAL SEENENV and +6.4%
on VAL UNSEENALL), and also requests help at
a previously visited location while executing the
same task more frequently (+7.22% on VAL SEE-
NENV and +8.59% on VAL UNSEENALL). This
phenomenon highlights a challenge in training the
navigation and training the help-request policies
jointly: as the navigation policy gets better, there
are less positive examples (i.e., situations where
the agent needs help) for the help-request policy
to learn from. In this specific case, learning a nav-
igation policy that is less accurate in seen environ-
ments is beneficial to the agent when it encounters
unseen environments because such a navigation
policy creates more positive examples for training

VAL SEENENV VAL UNSEENALL

Agent SR ↑ SPL ↑ Nav. ↓ Requests/ SR ↑ SPL ↑ Nav. ↓ Requests/
(%) (%) Err. (m) task ↓ (%) (%) Err. (m) task ↓

Final agent 87.24 63.02 1.21 2.9 45.64 22.68 7.72 5.9
No inter-task reset 83.62 60.44 1.44 3.2 40.60 19.89 8.26 7.3
No condition prediction 72.33 47.10 2.64 4.7 47.88 24.68 6.61 7.9
No cosine-similarity attention (β = 0) 83.08 59.52 1.68 3.0 43.69 22.44 7.94 6.9
No curiosity-encouraging loss (α = 0) 87.36 70.18 1.25 2.0 39.23 20.78 8.88 7.5

Table 2: Ablation study on our proposed techniques. Models are evaluated on the validation splits. Best results in
each column are in bold.

the help-request. Devising learning strategies that
learns both efficient navigation and help-request
policies is an exciting future direction.
Help-request Behavior on TEST UNSEENALL.
Our final agent requests about 18% of the to-
tal number of time steps (Figure 1a). Over-
all, it learns a conservative help-request policy
(Figure 1b). Figure 2 shows how accurate our
agent predicts the help-request conditions. The
agent achieves high precision scores in predict-
ing the lost and uncertain wrong condi-
tions (76.9% and 86.6%), but achieves lower re-
calls in all conditions (less than 50%). Surpris-
ingly, it predicts the already asked condition
less accurate than the other two, even though this
condition is intuitively fairly simple to realize.

References

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,
Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen
Gould, and Anton van den Hengel. 2018. Vision-
and-language navigation: Interpreting visually-
grounded navigation instructions in real environ-
ments. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
3674–3683.

Daniel Fried, Ronghang Hu, Volkan Cirik, Anna
Rohrbach, Jacob Andreas, Louis-Philippe Morency,
Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein,
and Trevor Darrell. 2018. Speaker-follower models
for vision-and-language navigation. In Proceedings
of Advances in Neural Information Processing Sys-
tems.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings of
Emperical Methods in Natural Language Process-
ing.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition chal-
lenge. International Journal of Computer Vision,
115(3):211–252.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

