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1 Appendix

1.1 Implementation details of the baseline
models

Setup. We implemented all the models using the
encoder-decoder architecture. The encoders are
different baseline models (listed below).The en-
coder takes as input the given story (paragraph )
p = (p1, p2, ...) and produces the representation
of the story. In all the models, the decoder is im-
plemented as a 2-layer MLP which takes as input
the concatenated representation of the story and
the embedding of the entities (for which the rela-
tionship is to be predicted) and returns a softmax
distribution over the relation types. We now de-
scribe the different baseline models (encoders) in
detail:
LSTM (Hochreiter and Schmidhuber, 1997): The
input paragraph is processed by a two-layer Bidi-
rectional LSTM and the hidden state corresponding
to the last time-step is used as the representation of
the story.
LSTM+attention (Cho et al., 2014): Similar to
LSTM, but instead of using just the hidden state at
the last timestep, the model computes the attention-
weighted mean of the hidden state at all time steps
to use as the representation of the story.
Relation Networks - RN (Santoro et al., 2017):
An relation module (implemented as an MLP) is
used alongside the LSTM to learn pairwise rela-
tions among all the pairs of sentences. These rela-
tion representations are the output of the relational
module. Our input data is prepared as a batch of
sentences × words. Each sentence is fed to the
LSTM, followed by a pooling (e.g. mean, max)
over all hidden states of each sentence to generate
the sentence embeddings. The query embeddings
are no longer needed in the decoder since they have
been incorporated by the relational module when
learning relations between sentences.

MAC(Compositional Attention Network) (Hudson
and Manning, 2018): A MAC cell is similar to RN,
but it also which contains a control state c and mem-
ory state m and can iterate over the input several
times. The number of iterations is a hyperparame-
ter. Just like RN, MAC is added behind the LSTM.
In each iteration, the model attends to the embed-
dings of the query entities to generate the current
control ci. Another attention head over ci and all
hidden outputs of LSTM is used to distill the new
information ri. In the end, a linear layer is used to
generate the new memory mi by combining ri and
mi−1. The final memory state gives the representa-
tion of the story. This model is the state-of-the-art
model for the CLEVER task.
BERT (Devlin et al., 2018): We adapt BERT pre-
trained language model to our task. Specifically, we
use two variants of BERT - the vanilla 12-layered
frozen BERT with pre-trained embeddings, and
BERT-LSTM, where a one-layer LSTM encoder
is added on top of pretrained BERT embeddings.
BERT encodes the sentences into 768-dimensional
vectors. To ensure that BERT does not treat the en-
tities as unknown tokens (and hence producing the
same representation for all of them), we represent
the entities with numbers in the vanilla BERT setup.
In BERT-LSTM, we replace the entity embeddings
by our entity embedding lookup policy (Refer Ap-
pendix 1.5). In both the cases, we use a simple
two-layer MLP decoder which takes as inputs the
pooled document representation and query repre-
sentations and produces the softmax distribution
over the relations.
Graph Attention Network(GAT) (Veličković
et al., 2018): Entity(modelled as nodes in the graph
) representations are learned by using the GAT
Graph Neural Network with attention-based ag-
gregation over the neighbor nodes. We modify the
GAT architecture by attending over each node vj in
the neighborhood of vi by concatenating the edge



representation ei,j to the representation of vi.

Relational Recurrent Network (RMC) (Santoro
et al., 2018): We also implemented RMC, a re-
cently proposed model for relational reasoning.
It works like an RNN, processing words step-by-
step, except that a memory matrix (num slots×
mem size) is added as the hidden state. The rela-
tional bias is extracted in each step by using self-
attention over the concatenation of memory ma-
trix and the word input in the current step. The
final memory matrix is the representation of the
story. Our implementation is based on another
open source implementation. 1. We noticed that
the performance of the model is significantly less
across all the tasks by a large margin. Till the time
of the submission, we could not verify whether this
subpar performance is due to buggy implementa-
tion of the code or due to some unexplored hyper-
parameter combination. Hence we decided not to
include the results corresponding to this model in
the empirical evaluation. We will continue working
on verifying the implementation of the model.

1https://github.com/L0SG/relational-rnn-pytorch

1.2 Relations and KB used in CLUTRR
Benchmark

[grand, X, Y ] ` [[child, X, Z], [child, Z, Y ]],

[grand, X, Y ] ` [[SO, X, Z], [grand, Z, Y ]],

[grand, X, Y ] ` [[grand, X, Z],

[sibling, Z, Y ]],

[inv-grand, X, Y ] ` [[inv-child, X, Z],

[inv-child, Z, Y ]],

[inv-grand, X, Y ] ` [[sibling, X, Z],

[inv-grand, Z, Y ]],

[child, X, Y ] ` [[child, X, Z],

[sibling, Z, Y ]],

[child, X, Y ] ` [[SO, X, Z],

[child, Z, Y ]],

[inv-child, X, Y ] ` [[sibling, X, Z],

[inv-child, Z, Y ]],

[inv-child, X, Y ] ` [[child, X, Z],

[inv-grand, Z, Y ]],

[sibling, X, Y ] ` [[child, X, Z],

[inv-un, Z, Y ]],

[sibling, X, Y ] ` [[inv-child, X, Z],

[child, Z, Y ]],

[sibling, X, Y ] ` [[sibling, X, Z],

[sibling, Z, Y ]],

[in-law, X, Y ] ` [[child, X, Z],

[SO, Z, Y ]],

[inv-in-law, X, Y ] ` [[SO, X, Z],

[inv-child, Z, Y ]],

[un, X, Y ] ` [[sibling, X, Z],

[child, Z, Y ]],

[inv-un, X, Y ] ` [[inv-child, X, Z],

[sibling, Z, Y ]],

In the CLUTRR Benchmark, the following kin-
ship relations are used: son, father, husband,
brother, grandson, grandfather, son-in-law, father-
in-law, brother-in-law, uncle, nephew, daughter,
mother, wife, sister, granddaughter, grandmother,
daughter-in-law, mother-in-law, sister-in-law, aunt,
niece.

We used a small, tractable, and logically sound
KB of rules as mentioned above. We carefully
select this set of deterministic rules to avoid am-
biguity in the resolution. We use gender-neutral
predicates and resolve the gender of the predi-
cate in the head H of a clause C by deducing
the gender of the second constant. We have two
types of predicates, vertical predicates (parent-
child relations) and horizontal predicates (sibling
or significant other). We denote all the vertical
predicates by its child-to-parent relation and ap-
pend the prefix inv- to the predicates for the
corresponding parent-to-child relation. For exam-

https://github.com/L0SG/relational-rnn-pytorch


Figure 1: Systematic Generalizability of different models on CLUTRR-Gen task (having 20% less placeholders
and without training and testing placeholder split), when Left: trained with k = 2 and k = 3 and Right: trained
with k = 2, 3 and 4

ple, grandfatherOf is denoted by the gender-
neutral predicate [inv-grand, X, Y ], where the
gender is determined by the gender of Y .

1.3 Effect of placeholder size and split

To analyze whether the language models fail to
learn a robust mapping from natural language nar-
ratives to underlying logical facts, we re-run the
generalization experiments with a reduced place-
holder size (20% of the full collected placeholders)
and we keep the same placeholders for both train-
ing and testing. We observe all language-based
models are now competitive with respect to GAT
on both training regimes k = 2, 3 and k = 2, 3, 4.
This shows the need for separating the placeholder
split to effectively test systematic generalization
because otherwise, current NLU systems tend to
exploit the underlying language layer to arrive at
the correct answer.

1.4 More evaluations on Robust Reasoning

We performed several additional experiments to
analyze the effect of different training regimes in
the Robust Reasoning setup (Table 1) of CLUTRR.
Specifically, we want to analyze the effect on zero-
shot generalization and robustness when training
with different noisy data settings. We notice that
the GAT model, having access to the true under-
lying graph of the puzzles, perform better across
different testing scenarios when trained with the
noisy data. As the Supporting facts contains cycles,
it is difficult for GAT to generalize for a dataset
with cycles when it is trained on a dataset without
cycles. However, when trained with cycles, GAT
learns to attend to all the paths leading to the cor-
rect answer. This effect is disastrous when GAT is

tested on Irrelevant facts which contains dangling
paths as GAT still tries to attend to all the paths.
Training on Irrelevant facts proved to be most ben-
eficial to GAT, as the model now perfectly attends
to only relevant paths.

Since Disconnected facts contains disconnected
paths, the message passing function of the graph
is unable to forward any information from the dis-
joint cliques, thereby having superior testing scores
throughout several scenarios.
Experiments on synthetic placeholders. In or-
der to further understand the effect of language
placeholders on robustness, we performed another
set of experiments where we use bABI (Weston
et al., 2015) style simple placeholders (Table 2).
We observe a marked increase in performance of all
NLU models, where they significantly decrease the
gap between their performance with that of GAT,
even outperforming GAT on various settings. This
shows the significance of using paraphrased place-
holders in devising the complexity of the dataset.

1.5 Comparison among different entity
embedding policies

In Cloze style reading comprehension tasks, it is
sometimes customary to choose UNK embeddings
for entity placeholders. (Chen et al., 2016) In our
task, however, choosing UNK embeddings for enti-
ties is not feasible as the query involves two entities
themselves. During preprocessing of our dataset,
we convert the entity names into a Cloze-style setup
where each entity is replaced by @entity-n token.
However, one has to be careful not to assign tokens
in the same order for all the stories, which will
lead to obvious overfitting since the models will
learn to work around positional markers as shown



Models Unstructured models (no graph) Structured model (with graph)

Training Testing BiLSTM - Attention BiLSTM - Mean RN MAC BERT BERT-LSTM GAT

Supporting Clean 0.38 ±0.04 0.32 ±0.04 0.4 ±0.09 0.45 ±0.03 0.19 ±0.06 0.39 ±0.06 0.92 ±0.17

Supporting 0.67 ±0.06 0.66 ±0.07 0.68 ±0.05 0.65 ±0.04 0.32 ±0.09 0.57 ±0.04 0.98 ±0.01

Irrelevant 0.44 ±0.03 0.39 ±0.03 0.51 ±0.08 0.46 ±0.09 0.2 ±0.06 0.36 ±0.05 0.5 ±0.23

Disconnected 0.31 ±0.21 0.25 ±0.16 0.47 ±0.08 0.41 ±0.06 0.2 ±0.08 0.32 ±0.04 0.92 ±0.05

Irrelevant Clean 0.57 ±0.05 0.56 ±0.05 0.46 ±0.13 0.67 ±0.05 0.24 ±0.06 0.46 ±0.08 0.92 ±0.0

Supporting 0.38 ±0.22 0.31 ±0.16 0.61 ±0.07 0.61 ±0.04 0.27 ±0.06 0.46 ±0.04 0.77 ±0.12

Irrelevant 0.51 ±0.06 0.52 ±0.06 0.5 ±0.04 0.56 ±0.04 0.25 ±0.06 0.53 ±0.06 0.93 ±0.01

Disconnected 0.44 ±0.26 0.54 ±0.27 0.55 ±0.05 0.61 ±0.06 0.26 ±0.03 0.45 ±0.08 0.85 ±0.25

Disconnected
Clean 0.45 ±0.02 0.47 ±0.03 0.53 ±0.09 0.5 ±0.06 0.22 ±0.09 0.44 ±0.05 0.75 ±0.07

Supporting 0.47 ±0.03 0.46 ±0.05 0.54 ±0.03 0.58 ±0.06 0.22 ±0.06 0.38 ±0.08 0.78 ±0.12

Irrelevant 0.47 ±0.05 0.48 ±0.03 0.52 ±0.04 0.51 ±0.05 0.17 ±0.04 0.38 ±0.05 0.56 ±0.26

Disconnected 0.57 ±0.07 0.57 ±0.06 0.45 ±0.11 0.4 ±0.1 0.17 ±0.05 0.47 ±0.06 0.96 ±0.01

Average 0.47 ±0.08 0.46 ±0.08 0.52 ±0.07 0.53 ±0.06 0.23 ±0.07 0.43 ±0.05 0.82 ±0.09

Table 1: Testing the robustness of the various models when trained various types of noisy facts and evaluated on
other noisy / clean facts. The types of noise facts (supporting, irrelevant and disconnected) are defined in Section
3.5 of the main paper.

Models Unstructured models (no graph) Structured model (with graph)

Training Testing BiLSTM - Attention BiLSTM - Mean RN MAC BERT BERT-LSTM GAT

Supporting Clean 0.96 ±0.01 0.97 ±0.01 0.88 ±0.05 0.94 ±0.02 0.48 ±0.08 0.57 ±0.08 0.92 ±0.17

Supporting 0.96 ±0.03 0.96 ±0.03 0.97 ±0.01 0.97 ±0.01 0.75 ±0.07 0.88 ±0.05 0.98 ±0.01

Irrelevant 0.92 ±0.02 0.93 ±0.01 0.9 ±0.03 0.91 ±0.01 0.56 ±0.04 0.54 ±0.06 0.5 ±0.23

Disconnected 0.8 ±0.04 0.83 ±0.04 0.76 ±0.08 0.86 ±0.04 0.27 ±0.06 0.42 ±0.08 0.92 ±0.05

Irrelevant Clean 0.63 ±0.02 0.61 ±0.07 0.85 ±0.09 0.8 ±0.07 0.53 ±0.09 0.44 ±0.06 0.92 ±0.0

Supporting 0.66 ±0.03 0.64 ±0.04 0.69 ±0.06 0.76 ±0.06 0.42 ±0.08 0.43 ±0.08 0.77 ±0.12

Irrelevant 0.89 ±0.04 0.86 ±0.1 0.74 ±0.11 0.78 ±0.06 0.61 ±0.1 0.83 ±0.06 0.93 ±0.01

Disconnected 0.64 ±0.02 0.62 ±0.05 0.72 ±0.05 0.73 ±0.04 0.41 ±0.04 0.61 ±0.05 0.85 ±0.25

Disconnected
Clean 0.9 ±0.05 0.82 ±0.12 0.94 ±0.02 0.93 ±0.04 0.68 ±0.07 0.64 ±0.02 0.75 ±0.07

Supporting 0.87 ±0.04 0.82 ±0.05 0.85 ±0.03 0.88 ±0.04 0.54 ±0.08 0.5 ±0.05 0.78 ±0.12

Irrelevant 0.87 ±0.03 0.85 ±0.03 0.83 ±0.03 0.87 ±0.02 0.59 ±0.09 0.58 ±0.09 0.56 ±0.26

Disconnected 0.91 ±0.04 0.91 ±0.03 0.8 ±0.17 0.71 ±0.11 0.49 ±0.1 0.79 ±0.1 0.96 ±0.01

Average 0.83 ±0.08 0.82 ±0.08 0.83 ±0.07 0.84 ±0.06 0.58 ±0.07 0.60 ±0.05 0.82 ±0.09

Table 2: Testing the robustness on toy placeholders of the various models when trained various types of noisy facts
and evaluated on other noisy / clean facts. The types of noise facts (supporting, irrelevant and disconnected) are
defined in Section 3.5 of the main paper.

in Chen et al. (2016). Therefore, we randomize
the Cloze-style entities themselves for each story.
We experimented with three different policies of
choosing the entity embeddings:

1. Fixed Random Embeddings: One simple and
intuitive choice is to assign a random embed-
ding to each entity and keep it fixed through-
out the training. During our data-processing
pipeline, we ensure that all the entity tokens
are randomized using a pool of entity tokens,
hence the chances of a model learning to ex-
ploit the positional markers are slim.

2. Randomized Random Embeddings: We can
go one step further and randomize the random
embeddings at each epoch. This aggressive
strategy does not let the model learn any posi-
tional markings at all, however it might ham-
per the learning ability of models as the entity
representations are changing arbitrarily.

3. Learned Random Embeddings: Since our data
pre-processing pipeline randomly assigns the
entities on each story, we can as well learn
a pool of n entities, from which a subset is
always used to replace the entities.

We chose to report all experiments with respect
to fixed random embeddings. We compared differ-
ent embedding policies with respect to the System-
atic Generalization task. We show a comparison be-
tween the Bidirectional LSTM and GAT in Figure
2. We see that the fixed embedding policy has bet-
ter Systematic Generalization score, although the
advantage is minor compared to the other schemes.
For GAT, the advantage is practically nil for the
different schemes which shows that a Graph Neural
Network performs inductive reasoning in the same
manner irrespective of the initial node embedding
representation.



Figure 2: Systematic Generalization comparison with different Embedding policies

1.6 AMT Data collection process
We use ParlAI (Miller et al., 2017) Mturk interface
to collect paraphrases from the users. Specifically,
given a set of facts, we ask the users to paraphrase
the facts into a story. The users (turkers) are free
to construct any story they like as long as they
mention all the entities and all the relations among
them. We also provide the head H of the clause
as an inferred relation and specifically instruct the
users to not mention it in the paraphrased story.
In order to evaluate the paraphrased stories, we
ask the turkers to peer review a story paraphrased
by a different turker. Since there are two tasks -
paraphrasing a story and rating a story - we choose
to pay 0.5$ for each annotation. A sample task
description in our MTurk interface is as follows:

In this task, you will need to write a short, simple
story based on a few facts. It is crucial that the
story mentions each of the given facts at least
once. The story does not need to be complicated!
It just needs to be grammatical and mention the
required facts.

After writing the story, you will be asked to eval-
uate the quality of a generated story (based on
a different set of facts). It is crucial that you
check whether the generated story mentions
each of the required facts.
Example of good and bad stories: Good Example

Facts to Mention

• John is the father of Sylvia.
• Sylvia has a brother Patrick.

Implied Fact: John is the father of Patrick.

Written story
John is the proud father of the lovely Sylvia.
Sylvia has a love-hate relationship with her
brother Patrick.

Bad Example

Facts to Mention

• Vincent is the son of Tim.

• Martha is the wife of Tim.

Implied Fact : Martha is Vincent’s mother.

Written story

Vincent is married at Tim and his mother is
Martha.

The reason the above story is bad:

• This story is bad because it is nonsense /
ungrammatical.

• This story is bad because it does not men-
tion the proper facts.

• This story is bad because it reveals the im-
plied fact.

To ensure that the turkers are providing high-
quality annotations without revealing the inferred
fact, we also launch another task to ask the turk-
ers to rate three annotations to be either good or
bad which are provided by a set of different turk-
ers. We pay 0.2$ for each HIT consisting of three
reviews. This helped to remove logical and gram-
matical inconsistencies to a large extent. Based
on the reviews, 79% of the collected paraphrases
passed the peer-review sanity check where all the
reviewers agree on the quality. This subset of the
placeholders is used in the benchmark. A sample
of programmatically generated dataset for clause
length of k = 2 to k = 6 is provided in the tables
5 to 9.

1.7 Human Evaluation

We performed a human evaluation study to ana-
lyze the difficulty of our proposed benchmark suite,
which is provided in Table 3. We perform the evalu-
ation in two scenarios: first a time-limited scenario
where we ask AMT Turkers to solve the puzzle in
a fixed time. Turkers were provided a maximum
time of 30 mins, but they solved the puzzles in an
average of 1 minute 23 seconds. Secondly, we use



Relation Length
Human Performance

Reported Difficulty
Time Limited Unlimited Time

2 0.848 1 1.488 +- 1.25
3 0.773 1 2.41 +- 1.33
4 0.477 1 3.81 +- 1.46
5 0.424 1 3.78 +- 0.96
6 0.406 1 4.46 +- 0.87

Table 3: Human performance accuracies on
CLUTRR dataset. Humans are provided the
Clean-Generalization version of the dataset, and
we test on two scenarios: when a human is given
limited time to solve the task, and when a human is
given unlimited time to solve the task. Regardless of
time, our evaluators provide a score of difficulty of
individual puzzles.

another set of expert evaluators who are given am-
ple time to solve the tasks. Not surprisingly, if a
human being is given ample time (experts took an
average of 6 minutes per puzzle) and a pen and a
paper to aid in the reasoning, they get all the rela-
tions correct. However, if an evaluator is short of
time, they might miss important details on the rela-
tions and perform poorly. Thus, our tasks require
active attention.

In both cases, we asked Turkers and our expert
human evaluators to rate the difficulty of a given
task in a Likert scale of 1-5, where 1 corresponds to
very easy and 5 corresponds to very hard perceived
difficulty. This score increases as we increase the
complexity of the task by increasing the relations,
thereby suggesting that a human being perceives
similar difficulty while solving for larger relation
tasks. However, since a human being is a system-
atic learner, given enough time they can solve all
puzzles with perfect accuracy. We set aside the task
of testing noisy scenarios of CLUTRR to human
evaluators as future work.
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2 Supplemental Material

To promote reproducibility, we follow the guide-
lines proposed by the Machine Learning Repro-
ducibility Checklist 2 and release the following
information regarding the experiments conducted
by our benchmark suite.

2.1 Details of datasets used
A downloadable link to the datasets used can be
found here 3. Details of the individual datasets can
be found in Table 4. For all experiments, we use
10,000 training examples and a 100 testing example
for each testing scenario. We split the training data
80-20 into a dev set randomly on each run.

2Machine Learning Reproducibility Checklist
3Dataset link in Google Drive

https://openreview.net/forum?id=S1Euwz-Rb
https://openreview.net/forum?id=S1Euwz-Rb
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1016/j.jpowsour.2014.09.131
https://doi.org/10.1016/j.jpowsour.2014.09.131
https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
https://drive.google.com/file/d/1SEq_e1IVCDDzsBIBhoUQ5pOVH5kxRoZF/view?usp=sharing


Dataset Variant - Training Variant - Testing Training Clause length Testing Clause length

data 089907f8
Clean - Generalization Clean - Generalization

(k = 2, 3)
(k = 2, 3, . . . , 10)

data db9b8f04 (k = 2, 3, 4)

data 7c5b0e70 Clean Clean, Supporting, Irrelevant, Disconnected (k = 2, 3) (k = 2, 3)

data 06b8f2a1 Supporting Clean, Supporting, Irrelevant, Disconnected (k = 2, 3) (k = 2, 3)

data 523348e6 Irrelevant Clean, Supporting, Irrelevant, Disconnected (k = 2, 3) (k = 2, 3)

data d83ecc3e Disconnected Clean, Supporting, Irrelevant, Disconnected (k = 2, 3) (k = 2, 3)

Table 4: Details of publicly released data

2.2 Details of Hyperparameters used
For all models, the common hyperparameters used
are: Embedding dimension: 100 (except BERT
based models), Optimizer: Adam, Learning rate:
0.001, Number of epochs: 100, Number of runs: 10.
Specific model-based hyperparameters are given as
follows:

• Bidirectional LSTM: LSTM hidden dimen-
sion: 100, # layers: 2, Classifier MLP hidden
dimension: 200

• Relation Networks: fθ1 : 256, fθ2 : 64, gθ :
64

• MAC: # Iterations: 6, shareQuestion:
True, Dropout - Memory, Read and Write:
0.2

• Relational Recurrent Networks: Memory
slots: 2, Head size: 192, Number of heads:
4, Number of blocks : 1, forget bias : 1, in-
put bias: 0, gate style: unit, key size: 64, #
Attention layers: 3, Dropout: 0

• BERT: Layers : 12, Fixed pretrained em-
beddings from bert-base-uncased us-
ing Pytorch HuggingFace BERT repository 4,
Word dimension: 768, appended with a two-
layer MLP for final prediction.

• BERT-LSTM: Same parameters as above,
with a two-layer unidirectional LSTM encoder
on top of BERT word embeddings.

• GAT: Node dimension: 100, Message dimen-
sion: 100, Edge dimension: 20, number of
rounds: 3

4https://github.com/huggingface/pytorch-pretrained-
BERT



Figure 3: Amazon Mechanical Turker Interface built using ParlAI which was used to collect data as well as peer
reviews.



Table 5: Snapshot of puzzles in the dataset for k=2

Puzzle Question Gender Answer

Charles’s son Christopher entered rehab for
the ninth time at the age of thirty. Randolph
had a nephew called Christopher who had n’t
seen for a number of years.

Randolph is the of Charles
Charles:male,
Christopher:male,
Randolph:male

brother

Randolph and his sister Sharon went to the
park. Arthur went to the baseball game with
his son Randolph

. Sharon is the of Arthur
Arthur:male,
Randolph:male,
Sharon:female

daughter

Frank went to the park with his father, Brett.
Frank called his brother Boyd on the phone.
He wanted to go out for some beers.

Brett is the of Boyd
Boyd:male,
Frank:male,
Brett:male

father

Table 6: Snapshot of puzzles in the dataset for k=3

Puzzle Question Gender Answer

Roger was playing baseball with his sons Sam
and Leon. Sam had to take a break though
because he needed to call his sister Robin.

Leon is the of Robin

Robin:female,
Sam:male,
Roger:male,
Leon:male

brother

Elvira and her daughter Nancy went shopping
together last Monday and they bought new
shoes for Elvira’s kids. Pedro and his sister
Allison went to the fair. Pedro’s mother, Nancy,
was out with friends for the day.

Elvira is the of Allison

Allison:female,
Pedro:male,
Nancy:female,
Elvira:female

grandmother

Roger met up with his sister Nancy and her
daughter Cynthia at the mall to go shopping
together. Cynthia’s brother Pedro was going
to be the star in the new show.

Pedro is the of Roger

Roger:male,
Nancy:female,
Cynthia:female,
Pedro:male

nephew



Table 7: Snapshot of puzzles in the dataset for k=4

Puzzle Question Gender Answer

Celina has been visiting her sister, Fran all
week. Fran is also the daughter of Bethany.
Ronald loves visiting his aunt Bethany over
the weekends. Samuel’s son Ronald entered
rehab for the ninth time at the age of thirty.

Celina is the of Samuel

Samuel:male,
Ronald:male,
Bethany:female,
Fran:female,
Celina:female

niece

Celina adores her daughter Bethany. Bethany
loves her very much, too. Jackie called her
mother Bethany to let her know she will be
back home soon. Thomas was helping his
daughter Fran with her homework at home.
Afterwards, Fran and her sister Jackie played
Xbox together.

Celina is the of Thomas

Thomas:male,
Fran:female,
Jackie:female,
Bethany:female,
Celina:female

daughter

Raquel is Samuel ’daughter and they go shop-
ping at least twice a week together. Ken-
neth and her mom, Theresa, had a big fight.
Theresa’s son, Ronald, refused to get involved.
Ronald was having an argument with her sister,
Raquel.

Samuel is the of Kenneth

Kenneth:male,
Theresa:female,
Ronald:male,
Raquel:female,
Samuel:male

father



Table 8: Snapshot of puzzles in the dataset for k=5

Puzzle Question Gender Answer

Steven’s son is Bradford. Bradford and his
father always go fishing together on Sundays
and have a great time together. Diane is taking
her brother Brad out for a late dinner. Kristin,
Brad’s mother, is home with a cold. Diane’s fa-
ther Elmer, and his brother Steven, all got into
the rental car to start the long cross-country
roadtrip they had been planning.

Bradford is the of Kristin

Kristin:female,
Brad:male,
Diane:female,
Elmer:male,
Steven:male,
Bradford:male

nephew

Elmer went on a roadtrip with his youngest
child, Brad. Lena and her sister Diane are go-
ing to a restaurant for lunch. Lena’s brother
Brad is going to meet them there with his fa-
ther Elmer Brad ca n’t stand his unfriendly
aunt Lizzie.

Lizzie is the of Diane

Diane:female,
Lena:female,
Brad:male,
Elmer:male,
Lizzie:female

aunt

Ira took his niece April fishing Saturday. They
caught a couple small fish. Ronald was enjoy-
ing spending time with his parents, Damion
and Claudine. Damion’s other son, Dennis,
wanted to come visit too. Dennis often goes
out for lunch with his sister, April.

Ira is the of Claudine

Claudine:female,
Ronald:male,
Damion:male,
Dennis:male,
April:female,
Ira:male

brother



Table 9: Snapshot of puzzles in the dataset for k=6

Puzzle Question Gender Answer

Mario wanted to get a good gift for his sis-
ter, Marianne. Jean and her sister Darlene
were going to a party held by Jean’s mom,
Marianne. Darlene invited her brother Roy
to come, too, but he was too busy. Teri and
her father, Mario, had an argument over the
weekend. However, they made up by Monday.
Agnes wants to make a special meal for her
daughter Teri’s birthday.

Roy is the of Agnes

Agnes:female,
Teri:female,
Mario:male,
Marianne:female,
Jean:female,
Darlene:female,
Roy:male

nephew

Robert’s aunt, Marianne, asked Robert to mow
the lawn for her. Robert said he could n’t
because he had a bad back. William’s par-
ents, Brian and Marianne, threw him a sur-
prise party for his birthday. Brian’s daughter
Jean made a mental note to be out of town for
her birthday! Agnes’s biggest accomplishment
is raising her son Robert. Jean is looking for a
good gift for her sister Darlene.

Darlene is the of Agnes

Agnes:female,
Robert:male,
Marianne:female,
William:male,
Brian:male,
Jean:female,
Darlene:female

niece

Sharon and her brother Mario went shopping.
Teri, Mario’s daughter, came too. Agnes, An-
nie’s mother, is unhappy with Robert. She
feels her son is cruel to Annie’s sister Teri, and
she wants Robert to be nicer. Robert’s sister,
Nicole, participated in the dance contest.

Nicole is the of Sharon

Sharon:female,
Mario:male,
Teri:female,
Annie:female,
Agnes:female,
Robert:male,
Nicole:female

niece


