
Appendix

A Related Works

A.1 AutoRegressive Translation

Given a sentence x = (x1, . . . , xTx) from the
source language, the straight-forward way for
translation is to generate the words in the target
language y = (y1, . . . , yTy) one by one from left
to right. This is also known as the autoregressive
factorization in which the joint probability is de-
composed into a chain of conditional probabili-
ties, as in the Eqn. (1). Deep neural networks are
widely used to model such conditional probabili-
ties based on the encoder-decoder framework. The
encoder takes the source tokens (x1, . . . , xTx) as
input and encodes x into a set of context states
c = (c1, . . . , cTx). The decoder takes c and sub-
sequence y<t as input and estimates P (yt|y<t, c)
according to some parametric function.

There are many design choices in the encoder-
decoder framework based on different types
of layers, e.g., recurrent neural network(RNN)-
based (Bahdanau et al., 2014), convolution neural
network(CNN)-based (Gehring et al., 2017) and
recent self-attention based (Vaswani et al., 2017)
approaches. We show a self-attention based net-
work (Transformer) in the left part of Figure 3.
While the ART models have achieved great suc-
cess in terms of translation quality, the time con-
sumption during inference is still far away from
satisfactory. During training, the ground truth pair
(x, y) is exposed to the model, and thus the pre-
diction at different positions can be estimated in
parallel based on CNN or self-attention networks.
However, during inference, given a source sen-
tence x, the decoder has to generate tokens se-
quentially, as the decoder inputs y<t must be in-
ferred on the fly. Such autoregressive behavior
becomes the bottleneck of the computational time
(Wu et al., 2016).

A.2 Non-AutoRegressive Translation

In order to speed up the inference process, a line of
works begin to develop non-autoregressive trans-
lation models. These models follow the encoder-
decoder framework and inherit the encoder struc-
ture from the autoregressive models. After gener-
ating the context states c by the encoder, a separate
module will be used to predict the target sentence
length Ty and decoder inputs z = (z1, . . . , zTy)
by a parametric function: (Ty, z) ∼ fz(x, c; θ),

which is either deterministic or stochastic. The de-
coder will then predict y based on following prob-
abilistic decomposition

P (y|x, Ty, z) = Π
Ty

t=1P (yt|z, c). (4)

Different configurations of Ty and z enable the de-
coder to produce different target sentence y given
the same input sentence x, which increases the
output diversity of the translation models.

Previous works mainly pay attention to different
design choices of fz . Gu et al. (2017) introduce
fertilities, corresponding to the number of target
tokens occupied by each of the source tokens, and
use a non-uniform copy of encoder inputs as z ac-
cording to the fertility of each input token. The
prediction of fertilities is done by a separated neu-
ral network-based module. Lee et al. (2018) de-
fine z by a sequence of generated target sentences
y(0), . . . , y(L), where each y(i) is a refinement of
y(i−1). Kaiser et al. (2018) use a sequence of au-
toregressively generated discrete latent variables
as inputs of the decoder.

While the expressiveness of z improved by dif-
ferent kinds of design choices, the computational
overhead of z will hurt the inference speed of the
NART models. Comparing to the more than 15×
speed up in Gu et al. (2017), which uses a rela-
tively simpler design choice of z, the speedup of
Kaiser et al. (2018) is reduced to about 5×, and the
speedup of Lee et al. (2018) is reduced to about
2×. This contradicts with the design goal of the
NART models: to parallelize and speed up neural
machine translation models.

A.3 Knowledge Distillation and Hint-Based
Training

Knowledge Distillation (KD) was first proposed
by Hinton et al. (2015), which trains a small stu-
dent network from a large (possibly ensemble)
teacher network. The training objective of the stu-
dent network contains two parts. The first part is
the standard classification loss, e.g, the cross en-
tropy loss defined on the student network and the
training data. The second part is defined between
the output distributions of the student network and
the teacher network, e.g, using KL-divergence .
Kim and Rush (2016) introduces the KD frame-
work to neural machine translation models. They
replace the ground truth target sentence by the
generated sentence from a well-trained teacher
model. Sentence-level KD is also proved helpful



for non-autoregressive translation in multiple pre-
vious works (Gu et al., 2017; Lee et al., 2018).

However, knowledge distillation only uses the
outputs of the teacher model, but ignores the
rich hidden information inside a teacher model.
Romero et al. (2014) introduced hint-based train-
ing to leverage the intermediate representations
learned by the teacher model as hints to improve
the training process and final performance of the
student model. Hu et al. (2018) used the attention
weights as hints to train a small student network
for reading comprehension.

B Network Architecture

Encoder and decoder Same as the ART model,
the encoder of the NART model takes the embed-
dings of source tokens as inputs,3 and generates a
set of context vectors. As discussed in the main
paper, the NART model needs to predict z given
length Ty and source sentence x. We use a simple
and efficient method to predict z = (z1, . . . , zTy).
Given source sentence x = (x1, . . . , xTx) and tar-
get length Ty, we denote e(xi) as the embedding
of xi. We linearly combine the embeddings of all
the source tokens to generate z as follows:

zj =
∑
i

wij · e(xi), (5)

where wij is the normalized weight that controls
the contribution of e(xi) to zj according to

wij ∝ exp
(
−(j − j′(i))2/τ

)
, (6)

where j = 1, . . . , Ty and j′(i) = (Ty/Tx) · i. τ is
a hyperparameter to control the “sharpness” of the
weight distribution. We use fz(x, Ty, τ) for this
weighted average function to be consistent as in
the non-autoregressive decomposition.

Three types of multi-head attention The ART
and NART models share two types of multi-head
attentions: multi-head self attention and multi-
head encoder-to-decoder attention. The NART
model specifically uses multi-head positional at-
tention to model local word orders within the

3Following (Vaswani et al., 2017; Gu et al., 2017) we also
use positional embedding to model relative correlation be-
tween positions and add it to word embedding in both source
and target sides. The positional embedding is represented by
a sinusoidal function of different frequencies to encode dif-
ferent positions. Specifically, the positional encoding epos is
computed as epos(j, k) = sin(j/10000k/d) (for even k) or
cos(j/10000k/d) (for odd k), where j is the position index
and k is the dimension index of the embedding vector.

sentence (Vaswani et al., 2017; Gu et al., 2017).
A general attention mechanism can be formu-
lated as querying a dictionary with key-value pairs
(Vaswani et al., 2017), e.g.,

Attention(Q,K, V )

= softmax
(

QKT

√
dmodel

)
· V, (7)

where dmodel is the dimension of hidden represen-
tations and Q (Query), K (Key), V (Value) differ
among three types of attentions. For self atten-
tion,Q,K and V are hidden representations of the
previous layer. For encoder-to-decoder attention,
Q is hidden representations of the previous layer,
whereas K and V are context vectors from the en-
coder. For positional attention, positional embed-
dings are used as Q and K, and hidden represen-
tations of the previous layer are used as V . The
multi-head variant of attention allows the model
to jointly attend to information from different rep-
resentation subspaces, and is defined as

Multi-head(Q,K, V )

= Concat(head1, · · · , headH)WO, (8)

headh

= Attention(QWQ
h ,KW

K
h , V W

V
h ), (9)

where WQ
h ∈ Rdmodel×dk , WK

h ∈ Rdmodel×dk ,
W V

h ∈ Rdmodel×dk , and WO
h ∈ Rdmodel×Hdv are

project parameter matrices, H is the number of
heads, and dk and dv are the numbers of dimen-
sions.

In addition to multi-head attentions, the encoder
and decoder also contain fully connected feed-
forward network (FFN) layers with ReLU acti-
vations, which are applied to each position sepa-
rately and identically. Compositions of self atten-
tion, encoder-to-decoder attention, positional at-
tention, and position-wise feed-forward network
are stacked to form the encoder and decoder of the
ART model and the NART model, with residual
connections (He et al., 2016) and layer normaliza-
tion (Ba et al., 2016).

C Extra Experimental Settings

Dataset specifications The split of the train-
ing/validation/test sets of the IWSLT14 dataset4

contain about 153K/7K/7K sentence pairs, respec-
tively. The training set of the WMT14 dataset5

4https://wit3.fbk.eu/
5http://www.statmt.org/wmt14/translation-task



Source: ich weiß , dass wir es können , und soweit es mich betrifft ist das etwas , was die welt jetzt braucht .

Target: i know that we can , and as far as i &apos;m concerned , that &apos;s something the world needs right now . 

ART: i know that we can , and as far as i &apos;m concerned , that &apos;s something that the world needs now . 

NART w/o Hints: i know that we can it , , as as as as it it it is , it &apos;s something that the world needs now .

NART w/ Hints: i know that we can do it and as as &apos;s m concerned , that &apos;s something that the world needs now .

Source: jeden morgen fliegen sie 240 kilometer zur farm .

Target: every morning , they fly 240 miles into the farm . 

ART: every morning , they fly 240 miles to the farm . 

NART w/o Hints: every morning , you fly 240 miles to every morning .

NART w/ Hints: every morning , they fly 240 miles to the farm . 

Source: aber bei youtube werden mehr als 48 stunden video pro minute hochgeladen .

Target: but there are over 48 hours of video uploaded to youtube every minute .

ART: but on youtube , more than 48 hours of video are uploaded per minute .

NART w/o Hints: but on youtube , uploaded than 48 hours hours of video per minute .

NART w/ Hints: but on youtube , more than 48 hours video are uploaded per minute .

Table 3: Cases on IWSLT14 De-En.

contains 4.5M parallel sentence pairs. New-
stest2014 is used as the test set, and Newstest2013
is used as the validation set. In both datasets, to-
kens are split into a 32000 word-piece dictionary
(Wu et al., 2016) which is shared in source and
target languages.

Model specifications For the WMT14 dataset,
we use the default network architecture of the
base Transformer model in Vaswani et al. (2017),
which consists of a 6-layer encoder and 6-layer de-
coder. The size of hidden nodes and embeddings
are set to 512. For the IWSLT14 dataset, we use
a smaller architecture, which consists of a 5-layer
encoder, and a 5-layer decoder. The size of hid-
den states and embeddings are set to 256 and the
number of heads is set to 4.

Hyperparameter specifications Hyperparame-
ters (τ, γst , γtr , λ, µ) are determined to make the
scales of three loss components similar after ini-
tialization. Specifically, we use τ = 0.3, γst =
0.1, γtr = 0.9, λ = 5.0, µ = 1.0 for IWSLT14
De-En, τ = 0.3, γst = 0.5, γtr = 0.9, λ =
5.0, µ = 1.0 for WMT14 De-En and WMT14 En-
De.

BLEU scores We use the BLEU score (Papineni
et al., 2002) as our evaluation measure. During
inference, we set C to 2,−2, 2 for WMT14 En-
De, De-En and IWSLT14 De-En datasets respec-
tively, according to the average lengths of differ-
ent languages in the training sets. When using the
teacher to rescore, we set B = 4 and thus have 9
candidates in total. We also evaluate the average
per-sentence decoding latencies on one NVIDIA

TITAN Xp GPU card by decoding on WMT14
En-De test sets with batch size 1 for our ART
teacher model and NART models, and calculate
the speedup based on them.

D Case Study

We provide some case studies for the NART mod-
els with and without hints in Table 3. From
the first case, we can see that the model with-
out hints translates the meaning of “as far as I’m
concerned” to a set of meaningless tokens. In
the second case, the model without hints omits
the phrase “the farm” and replaces it with a
repetitive phrase “every morning”. In the third
case, the model without hints mistakenly puts the
word “uploaded” to the beginning of the sentence,
whereas our model correctly translates the source
sentence. In all cases, hint-based training helps the
NART model to generate better target sentences.


