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A Appendix

A.1 Algorithm

We formally present the VERTEX ADDITION com-
pression algorithm, using notation defined in §??.
` linearizes a vertex set, based on left-to-right po-
sition in S. |P | indicates the number of tokens in
the priority queue.

Algorithm 1: VERTEX ADDITION

input: s = (V,E), Q ⊆ V , b ∈ R+

C ← Q;P ← V \Q;
while `(C) < b and |P | > 0 do

v ← pop(P );
if p(y = 1) > .5 and `(C ∪{v}) ≤ b then

C ← C ∪ {v}
end

end
return `(C)

A.2 Neural network tuning and optimization

We learn network parameters for VERTEX ADDI-
TIONNN by minimizing cross-entropy loss against
oracle decisions yi. We optimize with ADAGRAD

(Duchi et al., 2011). We learn input embeddings
after initializing randomly. The hyperparameters
of our network and training procedure are: the
learning rate, the dimensionality of input embed-
dings, the weight decay parameter, the batch size,
and the hidden state size of the LSTM. We tune
via random search (Bergstra and Bengio, 2012),
selecting parameters which achieve highest accu-
racy in predicting oracle decisions for the valida-
tion set. We train for 15 epochs, and we use pa-
rameters from the best-performing epoch (by vali-
dation accuracy) at test time.

Learning rate 0.025
Embedding dim. 315
Weight decay 1.88 ×10−9

Hidden dim. 158
Batch size 135

Table 1: Hyperparameters for VERTEX ADDITIONNN

A.3 Reimplementation of Filippova and
Altun (2013)

In this work, we reimplement the method of Fil-
ippova and Altun (2013), who in turn implement a
method partially described in Filippova and Strube

(2008). There are inevitable discrepancies be-
tween our implementation and the methods de-
scribed in these two prior papers.

1. Where the original authors train on only
100,000 sentences, we learn weights with the
full training set to compare fairly with VER-
TEX ADDITION (each model trains on the full
training set).

2. We use Gurobi Optimization (2018) (v8) to
solve the liner program. Filippova and Strube
(2008) report using LPsolve.1

3. We implement with the common Universal
Dependencies (UD, v1) framework (Nivre
et al., 2016). Prior work (Filippova and
Strube, 2008) implements with older de-
pendency formalisms (Briscoe et al., 2006;
de Marneffe et al., 2006).

4. In Table 1 of their original paper, Filippova
and Altun (2013) provide an overview of
the syntactic, structural, semantic and lexical
features in their model. We implement every
feature described in the table. We do not im-
plement features which are not described in
the paper.

5. Filippova and Altun (2013) augment edge
labels in the dependency parse of S as a
preprocessing step. We reimplement this
step using off-the-shelf augmented modi-
fiers and augmented conjuncts available with
the enhanced dependencies representation in
CoreNLP (Schuster and Manning, 2016).

6. Filippova and Altun (2013) preprocess de-
pendency parses by adding an edge between
the root node and all verbs in a sentence.2

We found that replicating this transform lit-
erally (i.e. only adding edges from the origi-
nal root to all tokens tagged as verbs) made it
impossible for the ILP to recreate some gold
compressions. (We suspect that this is due to
differences in output from part-of-speech tag-
gers). We thus add an edge between the root
node and all tokens in a sentence during pre-
processing, allowing the ILP to always return
the gold compression.

1http://sourceforge.net/projects/
lpsolve

2This step ensures that subclauses can be removed from
parse trees, and then merged together to create a compression
from different clauses of a sentence.

http:// sourceforge.net/projects/lpsolve
http:// sourceforge.net/projects/lpsolve


We assess convergence of the ILP by examin-
ing validation F1 score on the traditional sentence
compression task. We terminate training after six
epochs, when F1 score stabilizes (i.e. changes by
fewer than 10−3 points).

A.4 Implementation of SLOR

We use the SLOR function to measure the read-
ability of the shortened sentences produced by
each compression system. SLOR normalizes the
probability of a token sequence assigned from a
language model by adjusting for both the proba-
bility of the individual unigrams in the sentence
and for the sentence length.3

Following (Lau et al., 2015), we define the func-
tion as

SLOR =
logPm(ξ)− logPu(ξ)

|ξ|
(1)

where ξ is a sequence of words, Pu(ξ) is the
unigram probability of this sequence of words and
Pm(ξ) is the probability of the sequence, assigned
by a language model. |ξ| is the length (in tokens)
of the sentence.

We use a 3-gram language model trained on the
training set of the Filippova and Altun (2013) cor-
pus. We implement with KenLM (Heafield, 2011).
Because compression often results in shortenings
where the first token is not capitalized (e.g. a com-
pression which begins with the third token in S)
we ignore case when calculating language model
probabilities.

A.5 Latency evaluation

To measure latency, for each technique, we sam-
ple 100,000 sentences with replacement from the
test set. We observe the mean time to compress
each sentence using Python’s built-in timeit mod-
ule. In order to minimize effects from unantici-
pated confounds in measuring latency, we repeat
this experiment three separate times (with a one
hour delay between experiments). Thus in total we
collect 300,000 observations for each compression
technique. We observe that runtimes are log nor-
mal, and thus report each latency as the geometric
mean of 300,000 observations. We use an Intel
Xeon processor with a clock rate of 2.80GHz.

3Longer sentences are always less probable than shorter
sentences; rarer words make a sequence less probable.

A.6 Compression ratios
When comparing sentence compression systems,
it is important to ensure that all approaches use the
same rate of compression (Napoles et al., 2011).
Following Filippova et al. (2015), we define the
compression ratio as the character length of the
compression divided by the character length of the
sentence. We present test set compression ratios
for all methods in Table 2. Because ratios are sim-
ilar, our comparison is appropriate.

RANDOM 0.405
ILP 0.408
ABLATED 0.387
VERTEX ADDITIONLR 0.403
VERTEX ADDITIONNN 0.405

Cg Train 0.384
Cg Test 0.413

Table 2: Mean test time compression ratios for all tech-
niques. We also show mean ratios for gold compres-
sions Cg across the train and test sets.

.
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