Embeddings Words and Senses Together via Joint Knowledge-Enhanced Training

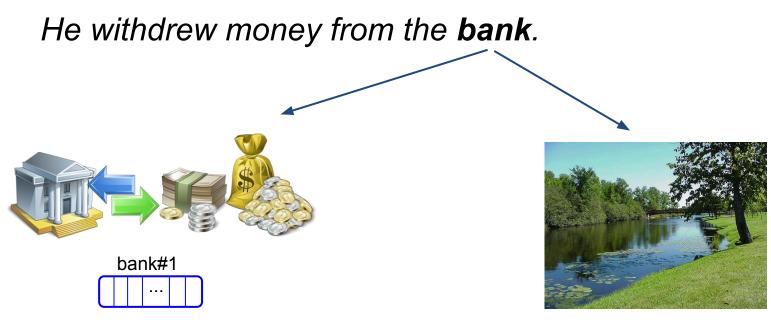
Massimiliano Mancini, **Jose Camacho-Collados**, Ignacio Iacobacci and Roberto Navigli

Dipartimento di Informatica

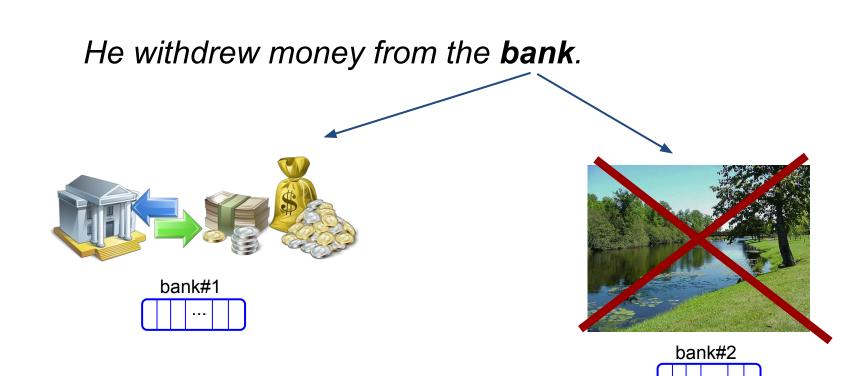
Motivation: Model senses instead of only words

He withdrew money from the **bank**.

Motivation: Model senses instead of only words



Motivation: Model senses instead of only words



Unsupervised sense embeddings

Knowledge-based sense embeddings

Unsupervised sense embeddings

Learn sense embeddings exploiting **text corpora only** (Huang et al. ACL 2012; Neelakantan et al. EMNLP 2014; Tian et al. COLING 2014; Li and Jurafsky, EMNLP 2015...). **Easily adaptable to new domains.**

Drawbacks:

- Senses not interpretable (+change from model to model)
- Knowledge from resources cannot be easily exploited
- Senses (esp. not frequent ones) not easy to discriminate

Knowledge-based sense embeddings

- Unsupervised sense embeddings
- Knowledge-based sense embeddings

Model senses as defined on a sense inventory.

Usually obtained as a **postprocessing of word embeddings** (Chen et al. EMNLP 2014; Rothe and Schütze, ACL 2015...):

- Several training phases
- Infrequent senses not accurately captured

Unsupervised sense embeddings

Knowledge-based sense embeddings (Our approach)

Unsupervised sense embeddings

Knowledge-based sense embeddings (Our approach)

Idea

A word is the surface form of a sense: we can exploit this intrinsic relationship for **jointly training word and sense embeddings**.

Idea

A word is the surface form of a sense: we can exploit this intrinsic relationship for **jointly training word and sense embeddings**.

How?

Updating the representation of the word and its associated senses interchangeably.

Given as input a **corpus** and a **semantic network**:

1. Use a semantic network to link to each word its *associated senses in context*.

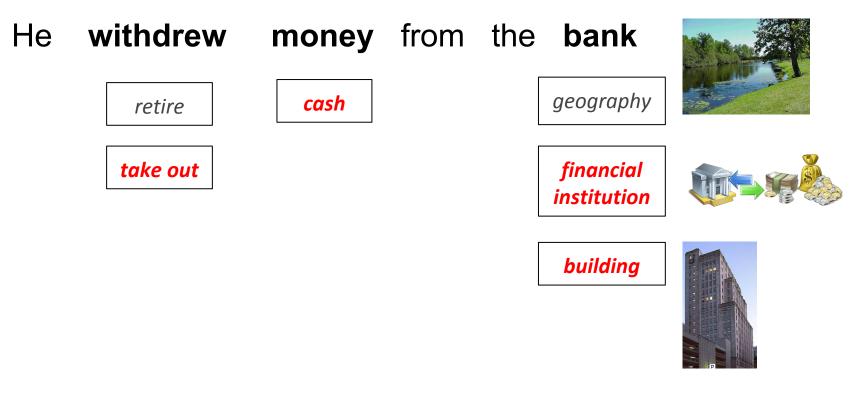
He withdrew money from the **bank**.

Given as input a **corpus** and a **semantic network**:

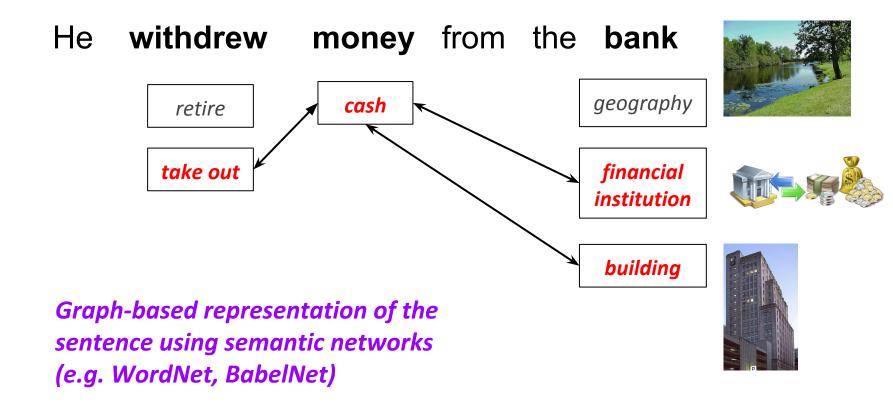
1. Use a semantic network to link to each word its *associated senses in context*.

He withdrew money from the **bank**.

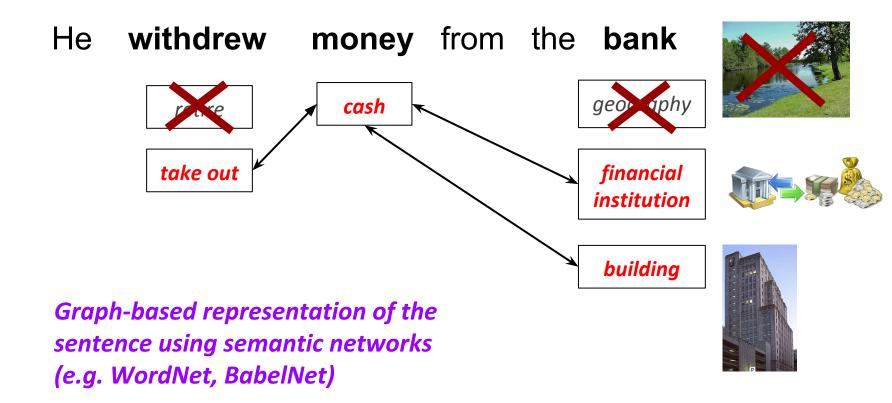
Methodology: Linking words and senses in context



Methodology: Linking words and senses in context



Methodology: Linking words and senses in context

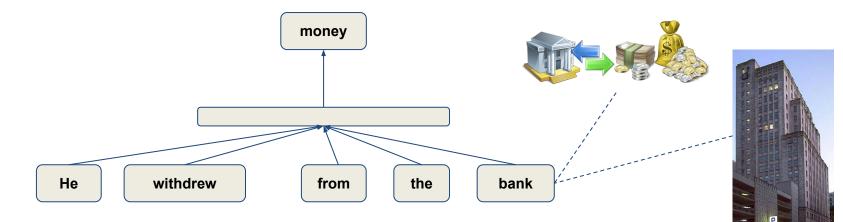


Given as input a corpus and a semantic network:

- 1. Use a semantic network to link to each word its *associated senses in context*.
- 2. Use a neural network where the update of word and sense embeddings is linked, exploiting *virtual* connections.

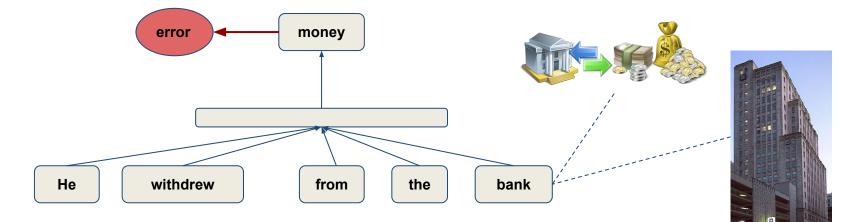
Given as input a corpus and a semantic network:

- 1. Use a semantic network to link to each word its *associated senses in context*.
- 2. Use a neural network where the update of word and sense embeddings is linked, exploiting *virtual* connections.



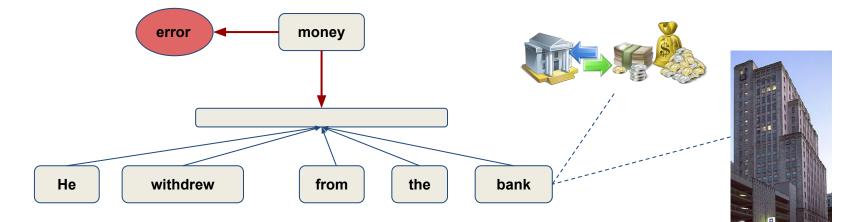
Given as input a corpus and a semantic network:

- 1. Use a semantic network to link to each word its *associated senses in context*.
- 2. Use a neural network where the update of word and sense embeddings is linked, exploiting *virtual* connections.



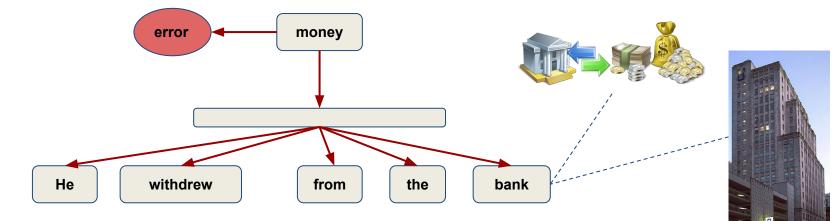
Given as input a corpus and a semantic network:

- 1. Use a semantic network to link to each word its *associated senses in context*.
- 2. Use a neural network where the update of word and sense embeddings is linked, exploiting *virtual* connections.



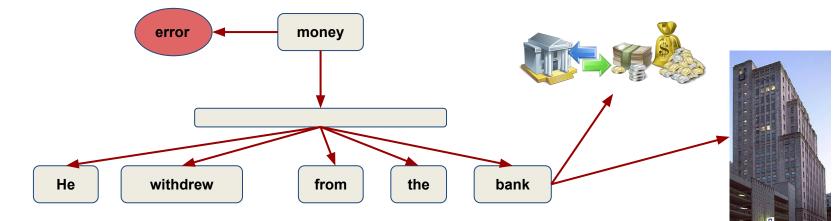
Given as input a corpus and a semantic network:

- 1. Use a semantic network to link to each word its *associated senses in context*.
- 2. Use a neural network where the update of word and sense embeddings is linked, exploiting *virtual* connections.



Given as input a corpus and a semantic network:

- 1. Use a semantic network to link to each word its *associated senses in context*.
- 2. Use a neural network where the update of word and sense embeddings is linked, exploiting *virtual* connections.



Given as input a corpus and a semantic network:

- 1. Use a semantic network to link to each word its *associated senses in context*.
- 2. Use a neural network where the update of word and sense embeddings is linked, exploiting *virtual* connections.

In this way it is possible to learn word and sense/synset embeddings jointly on a **single training**.

Methodology: Joint training of words and sense embeddings

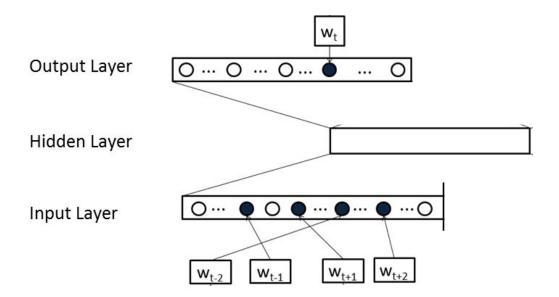
Once each word is connected to its set of senses *in context*, it is possible to **modify standard word embedding architectures** to take into account this information.

In this work we explore the CBOW architecture of Word2Vec (Mikolov et al. 2013) -> **SW2V** (Senses and Words to Vectors).

Other neural network architectures could be explored as well (Skip-gram also included in the code).

Full architecture of W2V (Mikolov et al. 2013)

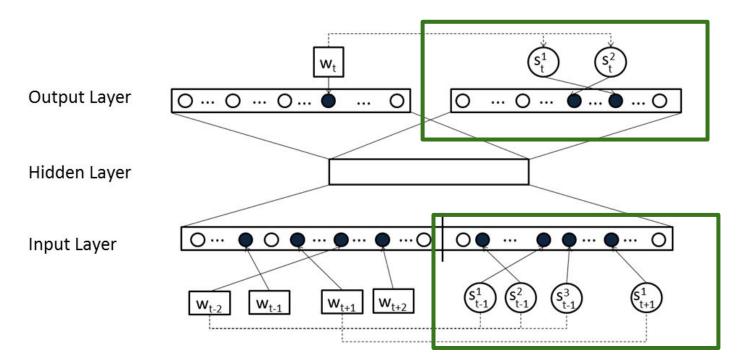
 $E=-log(p(w_t|W^t))$



Words and associated senses used both as input and output.

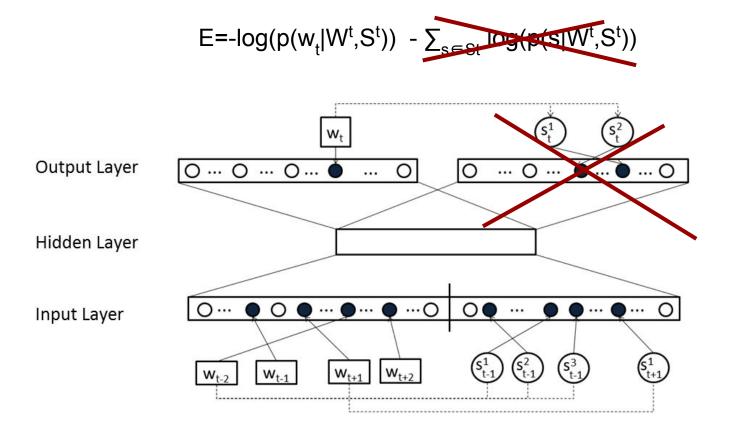
Full architecture of SW2V (this work)

 $\mathsf{E}=-\log(\mathsf{p}(\mathsf{w}_t|\mathsf{W}^t, \mathbf{S}^t)) - \sum_{s \in \mathsf{S}t} \log(\mathsf{p}(s|\mathbf{W}^t, \mathbf{S}^t))$



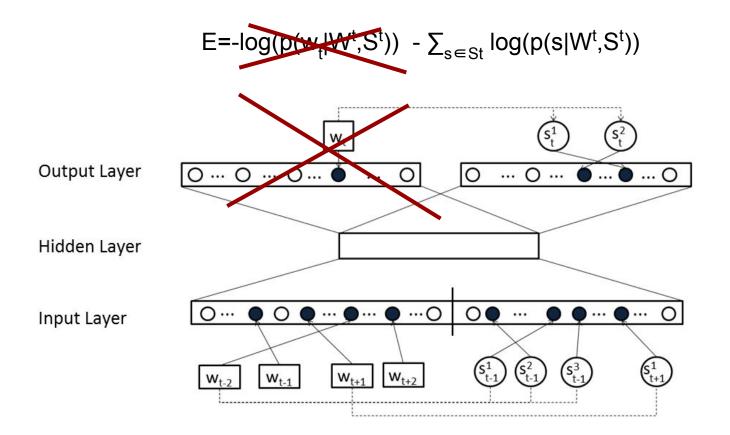
Words and associated senses used both as input and output.

Output layer alternatives: only words



The architecture does not try to predict senses. No loss contribution from them.

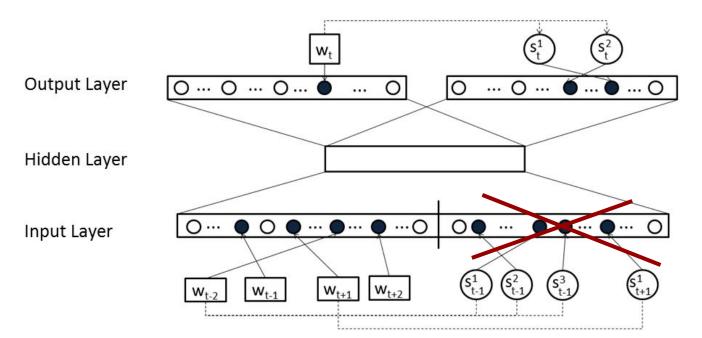
Output layer alternatives: only senses



The architecture does not try to predict words. No loss contribution from them.

Input layer alternatives: only words

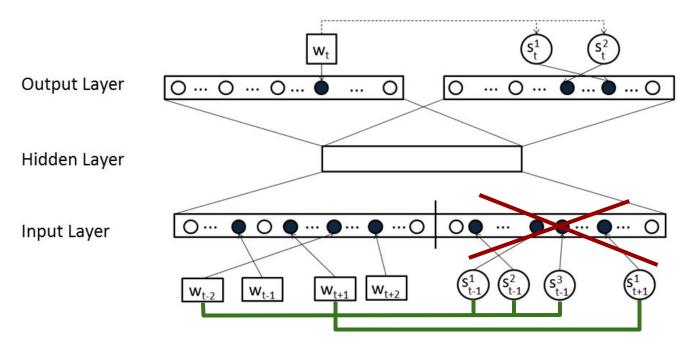
 $\mathsf{E}=-\log(\mathsf{p}(\mathsf{w}_t|\mathsf{W}^t,\mathsf{W})) - \sum_{s \in \mathsf{St}} \log(\mathsf{p}(s|\mathsf{W}^t,\mathsf{W}))$



Senses are not included in the input layer. Only words contribute to the hidden state. This way, during backpropagation sense embeddings do **not** receive any gradient.

Input layer alternatives: only words

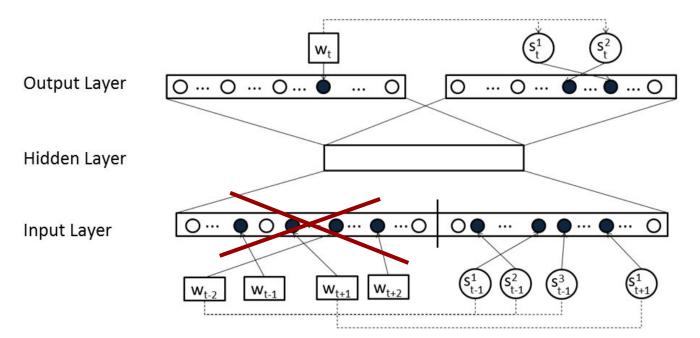
 $\mathsf{E}=-\log(\mathsf{p}(\mathsf{w}_t|\mathsf{W}^t,\mathsf{W})) - \sum_{s \in \mathsf{St}} \log(\mathsf{p}(s|\mathsf{W}^t,\mathsf{W}))$



During backpropagation, sense embeddings will receive the **same** gradient **of the word they are associated with**.

Input layer alternatives: only senses

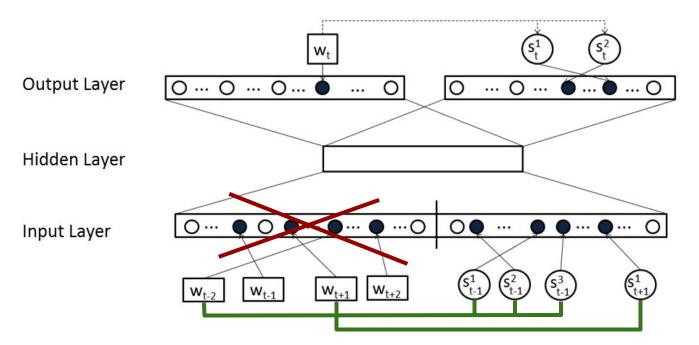
$$\mathsf{E}=-\log(\mathsf{p}(\mathsf{w}_t|\mathsf{M}^t,\mathsf{S}^t)) - \sum_{s\in\mathsf{S}^t}\log(\mathsf{p}(\mathsf{s}^t|\mathsf{M}^t,\mathsf{S}^t))$$



Words are not included in the input layer. Only senses contribute to the hidden state. This way, during backpropagation word embeddings do **not** receive any gradient.

Input layer alternatives: only senses

$$\mathsf{E}=-\log(\mathsf{p}(\mathsf{w}_t|\mathsf{M}^t,\mathsf{S}^t)) - \sum_{s\in\mathsf{S}^t}\log(\mathsf{p}(\mathsf{s}^t|\mathsf{M}^t,\mathsf{S}^t))$$



During backpropagation, their embeddings will receive the **same** gradient **of their associated senses**.

Analysis: Model configurations

We used word similarity for analyzing the **performance of sense embeddings** on each of the nine configurations.

- Best configuration -

- Input layer: Only senses
- Output layer: Both words and senses

Why? *(Intuition)* Co-occurrence information gets duplicated if both words and senses are included in the input layer.

Evaluation: Experimental setting

- Best configuration used in all experiments
- > Standard hyperparameters
- Semantic networks used: WordNet and BabelNet
- Corpora used: UMBC and Wikipedia
- > Experiments on:
 - Word and sense interconnectivity (qualitative)
 - Word similarity
 - Sense clustering

Evaluation: Comparison systems

Sense embeddings:

- ➤ Chen et al. (2014)
- ☆ ➤ AutoExtend (Rothe and Schütze, 2015)
 - SensEmbed (*lacobacci et al. 2015*)
 - > NASARI (Camacho-Collados et al. 2016)

Evaluation: Comparison systems

Sense embeddings:

- ➤ Chen et al. (2014)
- ☆ ➤ AutoExtend (Rothe and Schütze, 2015)
 - SensEmbed (lacobacci et al. 2015) —
 - NASARI (Camacho-Collados et al. 2016)

Evaluation: Comparison systems

Sense embeddings:

- ➤ Chen et al. (2014)
- ☆ ➤ AutoExtend (Rothe and Schütze, 2015)
 - SensEmbed (lacobacci et al. 2015) —
 - NASARI (Camacho-Collados et al. 2016)

Word embeddings:

- ➢ Word2Vec (Mikolov et al. 2013)
- \bigstar > Retrofitting (Faruqui et al. 2015)

Evaluation: Comparison systems

Sense embeddings:

- ➤ Chen et al. (2014)
- \bigstar > AutoExtend (*Rothe and Schütze, 2015*)
 - SensEmbed (lacobacci et al. 2015) —
 - NASARI (Camacho-Collados et al. 2016)

WordNet

BabelNet

Word embeddings:

- ➤ Word2Vec (Mikolov et al. 2013)
- 🛧 \succ Retrofitting (Faruqui et al. 2015)

Evaluation: Word and sense interconnectivity

How coherent is the shared vector space of word and sense embeddings?

Intuition: the Most Frequent Sense (MFS) should be close to the word embedding -> Reasonably strong MFS baseline for WSD

Evaluation on two WSD datasets using the **embeddings as a MFS baseline** (closest sense embedding to its associated word embedding is selected).

Evaluation: Word and sense interconnectivity

F-Measure

60 ----SemEval-07 SemEval-13 54 40 -39,9 34,9 31 24,8 20 -17,6 0 Random Baseline AutoExtend SW2V

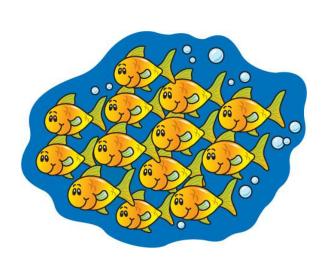
Word and sense interconnectivity: Example I

AutoExtend company⁹ company company⁸ company, company⁷ company₁¹ firm $business_n^1$ firm² $company_n^{\perp}$

 $company_n^2$ (military unit) SW2V battalion¹ battalion regiment¹ detachment⁴ platoon, $brigade_n^1$ regiment $corps_n^1$ brigade platoon

Ten closest word and sense embeddings to the sense *company* (military unit)

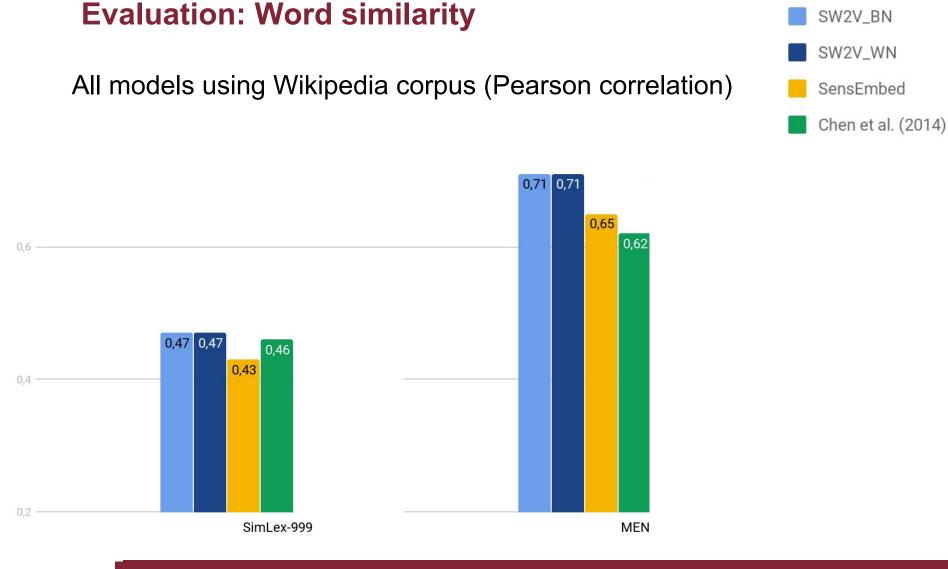
Word and sense interconnectivity: Example II

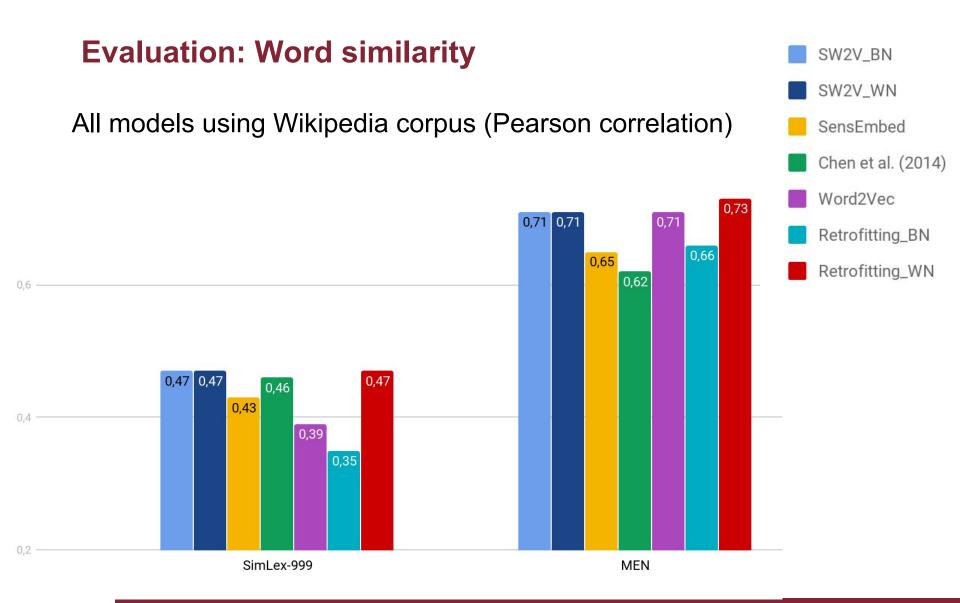


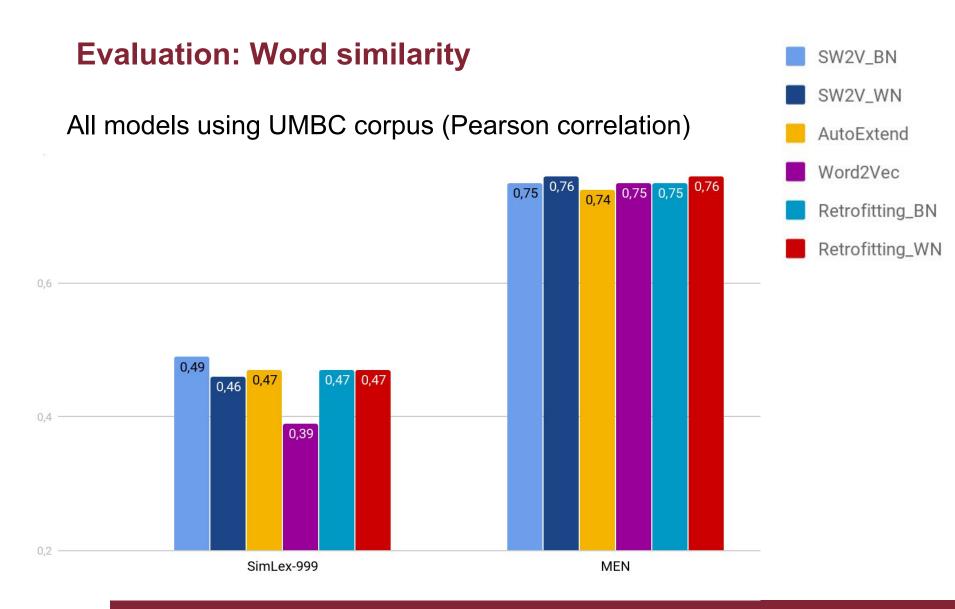
 $school_n^7$ (group of fish) AutoExtend school $school_n^4$ school⁶ school¹ school³ elementary schools elementary³ school⁵ elementary¹

SW2V schools_n sharks¹_n sharks shoals³ fish, dolphins¹ pods³ eels dolphins whales_n²

Ten closest word and sense embeddings to the sense school (group of fish)

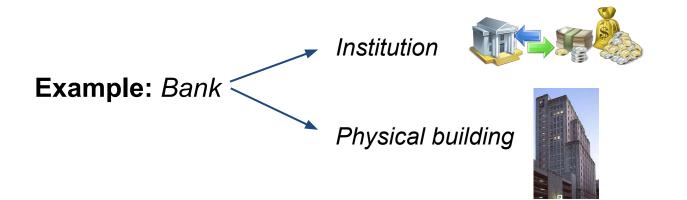






Evaluation: Sense clustering

Some sense inventories make a fine-grained distinction between senses, which can be harmful on downstream applications (Hovy et al. 2013, Pilehvar et al. 2017).



Evaluation datasets (Dandala et al. 2013): Highly ambiguous words from past SemEval competitions.

Conclusion

We presented SW2V: a neural architecture for **jointly learning word and sense embeddings** in the same vector space using text corpora and knowledge obtained from semantic networks.

Conclusion

We presented SW2V: a neural architecture for **jointly learning word and sense embeddings** in the same vector space using text corpora and knowledge obtained from semantic networks.

Future work:

- Exploiting our model for other linked representations such as **multilingual** or **Image-to-Text embeddings**.
- Word Sense Disambiguation and Entity Linking.
- Integrating our embeddings into **downstream NLP applications**, following the lines of *Pilehvar et al. (ACL 2017)*.

Conclusion

We presented SW2V: a neural architecture for **jointly learning word and sense embeddings** in the same vector space using text corpora and knowledge obtained from semantic networks.

Future work:

- Exploiting our model for other linked representations such as **multilingual** or **Image-to-Text embeddings**.
- Word Sense Disambiguation and Entity Linking.
- Integrating our embeddings into **downstream NLP applications**, following the lines of *Pilehvar et al. (ACL 2017)*.

http://lcl.uniroma1.it/sw2v

Thank you!

Code and pre-trained models available at

http://lcl.uniroma1.it/sw2v

SECRET SLIDES

Outline

- Related work
- Our approach: SW2V (Senses and Words to Vectors)
 - Linking words and senses in context
 - Joint training of words and sense embeddings
- Evaluation

Methodology

Given as input a corpus and a semantic network:

1. Use a semantic network to link to each word its *associated senses in context*.

He withdrew money from the **bank**.

Joint training of word and sense embeddings

Once each word is connected to its set of senses *in context*, it is possible to modify standard word embedding models to take into account this information.

Formally, given a target word at position *t* we have a set of words:

 $W=\{w_{t-n}, \dots, w_t, \dots, w_{t+n}\} \text{ with } W^t=W \setminus w_t$

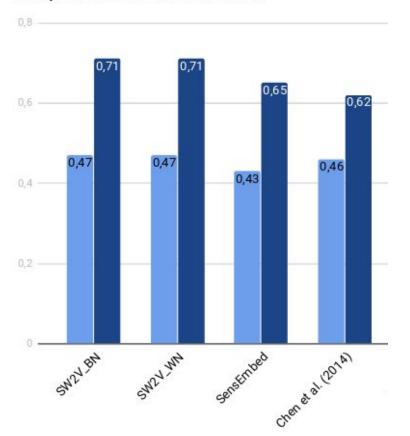
and a set of associated senses:

 $S = \{S_{t-n}, \dots, S_t, \dots, S_{t+n}\} \text{ and } S^t = S \setminus S_t$ with $S_i = \{s_i^{1}, \dots, s_i^{k,i}\}$ the senses associated with the i_{th} word.

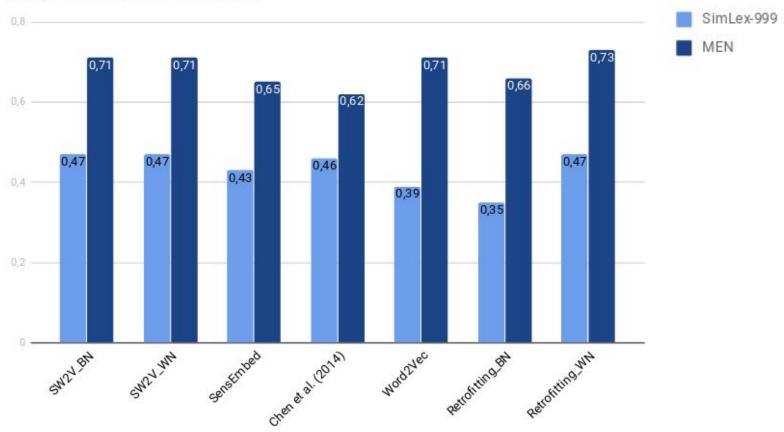
We aim at minimizing: $E = -\log(p(w_t|W^t, S^t)) - \sum_{s \in S^t} \log(p(s|W^t, S^t))$

Sense Embeddings		SimLex-999		MEN							
System	Corpus	r	p	r	p						
SW2V _{BN}	UMBC	0.49	0.47	0.75	0.75						
SW2V _{WN}	UMBC	0.46	0.45	0.76	0.76	Word Embeddings		SimLex-999		MEN	
AutoExtend	UMBC	0.47	0.45	0.74	0.75	System	Corpus	r	p	r	р
AutoExtend	Google-News	0.46	0.46	0.68	0.70	Word2Vec	UMBC	0.39	0.39	0.75	0.75
		0.40	0.40		0.70	Retrofitting _{BN}	UMBC	0.47	0.46	0.75	0.76
SW2V _{BN}	Wikipedia	0.47	0.43	0.71	0.73	Retrofitting _{wN}	UMBC	0.47	0.46	0.76	0.76
SW2V _{WN}	Wikipedia 0.47 0.43 0.71	0.72	Word2Vec	Wikipedia	0.39	0.38	0.71	0.72			
50020 _{WN}		0.77	0.40	0.71	0.72	Retrofitting _{BN}	Wikipedia	0.35	0.32	0.66	0.66
SensEmbed	Wikipedia	0.43	0.39	0.65	0.70	Retrofitting _{wN}	Wikipedia	0.47	0.44	0.73	0.73
Chen et al.	Embedding Words	s and Se	enses To	ogether v	via Joint	Knowledge-Enhanc	ed training				

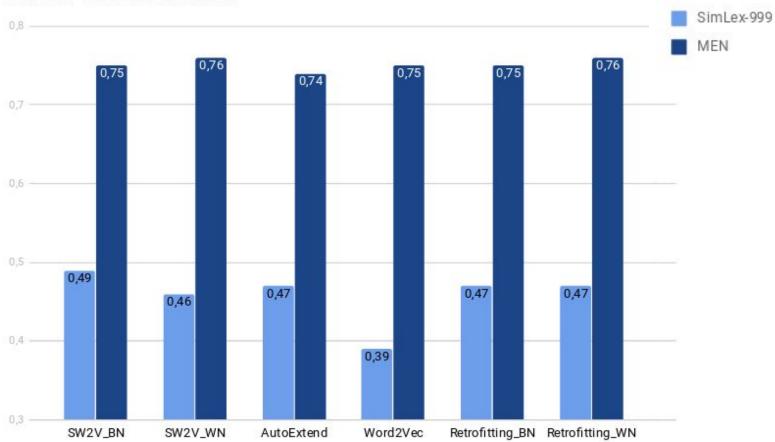
Massimiliano Mancini, Jose Camacho-Collados, Ignacio Iacobacci and Roberto Navigli



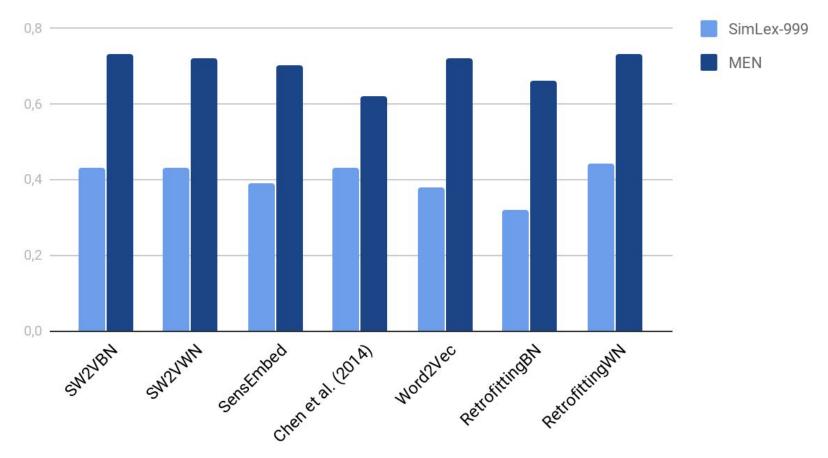
Wikipedia: Pearson correlation



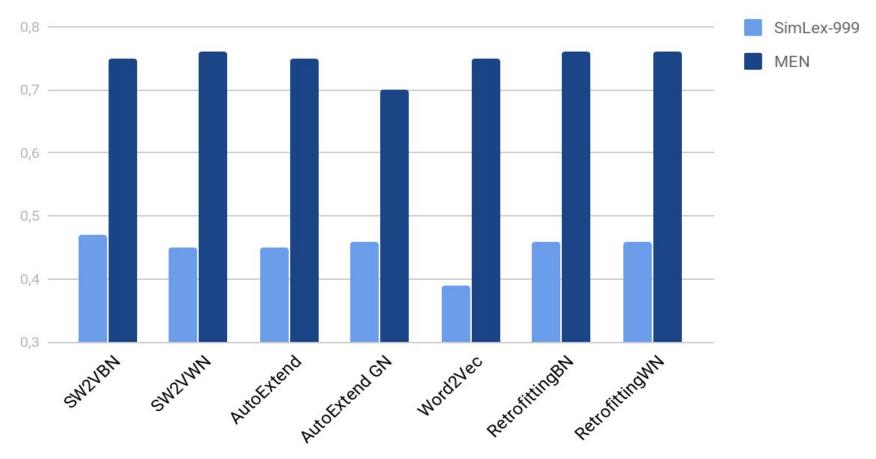
Wikipedia: Pearson correlation



UMBC: Pearson correlation

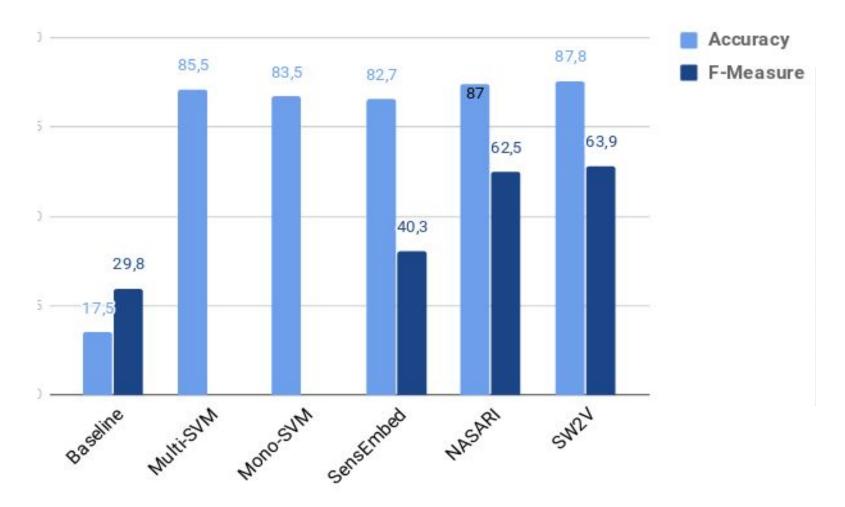


Wikipedia: Spearman correlation



UMBC: Spearman correlation

Evaluation: Sense clustering



Evaluation: Sense clustering

	Accuracy	F-Measure	
SW2V	87.8	63.9	
SensEmbed	82.7	40.3	
NASARI	87.0	62.5	
Multi-SVM	85.5	-	
Mono-SVM	83.5	-	
Baseline	17.5	29.8	

Word and sense interconnectivity

	SemEval-07	SemEval-13		
SW2V	39.9	54.0		
AutoExtend	17.6	31.0		
Baseline	24.8	34.9		