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1 Dataset

Generating SPARQL queries Given a
SPARQL query r, we create four types of
more complex queries: conjunctions, superlatives,
comparatives, and compositions. For conjunc-
tions, superlatives, and comparatives, we identify
SPARQL queries in WEBQUESTIONSSP whose
denotation is a set A, |A| ≥ 2, and generate
a new query r′ whose denotation is a strict
subset A′,A′ ⊂ A,A′ 6= φ. We also discard
questions that contain the answer within the new
machine-generated questions.

For conjunctions this is done by traversing the
KB and looking for SPARQL triplets that can be
added and will yield a valid set A′.

For comparatives and superlatives this is done
by finding a numerical property common to all a ∈
A, and adding a clause to r accordingly.

For compositions, we find an entity e in r, and
replace e with a variable y and add to r a clause
such that the denotation of the clause is {e}. We
also check for discard ambiguous questions that
yield more than one answer for entity e.

Table 1 gives the exact rules for generation.

Machine-generated (MG) questions To have
AMT workers paraphrase SPARQL queries into
natural language, we need to present them in an
understandable form. Therefore, we automatically
generate a question they can paraphrase. When
we generate SPARQL queries, new predicates are
added to the query (Table 1). We manually anno-
tate 503 templates mapping predicates to text for
different compositionality types (with 377 unique
KB predicates). We annotate the templates in the
context of several machine-generated questions to
ensure that they result templates are in understand-
able language.

We use those templates to modify the
original WEBQUESTIONSSP question ac-
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What movies have robert pattinson starred in?

ns:rebert_pattinson ns:film.actor.film ?c .
?c ns:film.performance.film ?x .

What movies have robert pattinson starred in and 
is the movie that was produced by Erwin Stoff?

Which Robert Pattinson film was produced by Erwin Stoff?

3. New SPARQL Term ?x ns:film.film.produced_by ns:erwin_stoff

4. New Term Template The movie that was produced by obj

Figure 1: Overview of data collection process. Blue text
denotes different stages of the term addition, green represents
the obj value, and red the intermediate text to connect the new
term and seed question

cording to the meaning of the generated
SPARQL query. E.g., the template for
?x ns:book.author.works written obj
is “the author who wrote OBJ”. Table 2 shows
various examples of such templates. “Obj” is
replaced in turn by the actual name according
to Freebase of the object at hand. Freebase
represents events that contain multiple arguments
using a special node in the knowledge-base called
CVT that represents the event, and is connected
with edges to all event arguments. Therefore,
some of our templates include two predicates that
go through a CVT node, and they are denoted in
Table 2 with ’+’.

To fuse the templates with the original WE-
BQUESTIONSSP natural language questions, tem-
plates contain lexical material that glues them
back to the question conditioned on the compo-
sitionality type. For example, in CONJ questions
we use the coordinating phrase “and is”, so that
“the author who wrote OBJ” will produce “Who
was born in London and is the author who wrote
OBJ”.

First word distribution We find that in WE-
BQUESTIONS almost all questions start with a
wh-word, but in COMPLEXWEBQUESTIONS 22%



Composit. Complex SPARQL query r′ Example (natural language)

CONJ. r. ?x pred1 obj. or “What films star Taylor Lautner and have costume designs by Nina Proctor?”
r. ?x pred1 ?c. ?c pred2 obj.

SUPER. r. ?x pred1 ?n.ORDER BY DESC(?n) LIMIT 1 “Which school that Sir Ernest Rutherford attended has the latest founding date?”
COMPAR. r. ?x pred1?n. FILTER ?n < V “Which of the countries bordering Mexico have an army size of less than 1050?”
COMP. r[e/y]. ?y pred1obj. “Where is the end of the river that originates in Shannon Pot?”

Table 1: Rules for generating a complex query r′ from a query r (’.’ in SPARQL corresponds to logical and). The query r
returns the variable ?x, and contains an entity e. We denote by r[e/y] the replacement of the entity e with a variable ?y. pred1

and pred2 are any KB predicates, obj is any KB entity, V is a numerical value, and ?c is a variable of a CVT type in Freebase
which refers to events. The last column provides an example for a NL question for each type.

Freebase Predicate Template
ns:book.author.works written “the author who wrote obj”
ns:aviation.airport.airlines + ns:aviation.airline airport presence.airline “the airport with the obj airline”
ns:award.competitor.competitions won “the winner of obj”
ns:film.actor.film + ns:film.performance.film “the actor that played in the film obj”

Table 2: Template Examples
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Figure 2: First word in question distribution

of the questions start with another word, again
showing substantial paraphrasing from the origi-
nal questions. Figure 2 Shows the distribution of
first words in questions.

2 Generating noisy supervision

We created a heuristic for approximating the
amount of global word re-ordering performed by
AMT workers and creating noisy supervision. For
every question, we constructed a matrix A, where
Aij is the similarity between token i in the MG
question and token j in the NL question. Sim-
ilarity is 1 if lemmas match, or the cosine dis-
tance according to GloVe embedding, when above
a threshold, and 0 otherwise. This allows us to
compute an approximate word alignment between
the MG question and the NL question tokens and
assess whether word re-ordering occurred.

For a natural language CONJ question of length
n and a machine-generated question of length m

with a known split point index r, the algorithm
first computes the best point to split the NL ques-
tion assuming there is no re-ordering. This is done
iterating over all candidate split points p, and re-
turning the split point p∗1 that maximizes:∑

0≤i<p

max
0≤j<r

A(i, j) +
∑

p≤i<n

max
r≤j<m

A(i, j) (1)

We then compute p∗1 by trying to find the best
split point, assuming that there is re-ordering in
the NL questions:

∑
0≤i<p

max
r≤j<m

A(i, j) +
∑

p≤i<n

max
0≤j<r

A(i, j) (2)

We then determine the final split point and
whether re-ordering occurred by comparing the
two values and using the higher one.

In COMP questions, two split points are re-
turned, representing the beginning and end of the
phrase that is to be sent to the QA model. There-
fore, if r1, r2 are the known split points in the
machine-generated questions, we return p1, p2 that
maximize:∑
0≤i<p1

max
0≤j<r1

A(i, j) +
∑

p1≤i<p2

max
r1≤j<r2

A(i, j)

+
∑

p2≤i<n

max
r2≤j<m

A(i, j).

Figure 3 illustrates finding the split point for a
CONJ questions by using equation (2). The red
line in Figure 3 corresponds to the known split
point in the MG question, and the blue one is the
estimated split point p∗ in the NL question.
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Figure 3: Heat map for similarity matrix between an MG
and NL question. The red line indicates a known MG split
point. The blue line is the approximated NL split point. Be-
low is a graph of each candidate split point score.


