A Detailed Architecture

This appendix describes in detail the implementation of the self-attentive residual decoder for NMT, which builds on the attention-based NMT implementation of dl4mt-tutorial ${ }^{1}$.

The input of the model is a source sentence denoted as 1 -of-k coded vector, where each element of the sequence corresponds to a word:

$$
x=\left(x_{1}, x_{2}, \ldots, x_{m}\right), x_{i} \in \mathbb{R}^{V}
$$

and the output is a target sentence denoted as well as 1 -of-k coded vector:

$$
y=\left(y_{1}, y_{2}, \ldots, y_{n}\right), y_{i} \in \mathbb{R}^{V}
$$

where V is the size of the vocabulary of target and source side, m and n are the lengths of the source and target sentences respectively. We omit the bias vectors for simplicity.

A. 1 Encoder

Each word of the source sentence is embedded in a e-dimensional vector space using the embedding matrix $\bar{E} \in \mathbb{R}^{e \times V}$. The hidden states are $2 d$ dimensional vectors modeled by a bi-directional GRU. The forward states $\vec{h}=\left(\vec{h}_{1}, \ldots, \vec{h}_{m}\right)$ are computed as:

$$
\vec{h}_{i}=\vec{z}_{i} \odot \vec{h}_{i-1}+\left(1-\vec{z}_{i}\right) \odot \vec{h}_{i}^{\prime}
$$

where

$$
\begin{aligned}
\vec{h}_{i}^{\prime} & =\tanh \left(\vec{W} \bar{E} x_{i}+\vec{U}\left[\vec{r}_{i} \odot \vec{h}_{i-1}\right]\right) \\
\vec{z}_{i} & =\sigma\left(\vec{W}_{z} \bar{E} x_{i}+\vec{U}_{z} \vec{h}_{i-1}\right) \\
\vec{r}_{i} & =\sigma\left(\vec{W}_{r} \bar{E} x_{i}+\vec{U}_{r} \vec{h}_{i-1}\right)
\end{aligned}
$$

Here, $\vec{W}, \vec{W}_{z}, \vec{W}_{r} \in \mathbb{R}^{d \times e}$ and $\vec{U}, \vec{U}_{z}, \vec{U}_{r} \in$ $\mathbb{R}^{d \times d}$ are weight matrices. The backward states $\overleftarrow{h}=\left(\overleftarrow{h}_{1}, \ldots, \overleftarrow{h}_{m}\right)$ are computed in similar manner. The embedding matrix \bar{E} is shared for both passes, and the final hidden states are formed by the concatenation of them:

$$
h_{i}=\left[\begin{array}{c}
\vec{h}_{i} \\
\overleftarrow{h}_{i}
\end{array}\right]
$$

[^0]
A. 2 Attention Mechanism

The context vector at time t is calculated by:

$$
c_{t}=\sum_{i=1}^{m} \alpha_{i}^{t} h_{i}
$$

where

$$
\begin{aligned}
\alpha_{i}^{t} & =\frac{\exp \left(e_{i}^{t}\right)}{\sum_{j} \exp \left(e_{j}^{t}\right)} \\
e_{i}^{t} & =v_{a}^{\top} \tanh \left(W_{d} s_{t-1}+W_{e} h_{i}\right)
\end{aligned}
$$

Here, $v_{a} \in \mathbb{R}^{d}$, $W_{d} \in \mathbb{R}^{d \times d}$ and $W_{e} \in \mathbb{R}^{d \times 2 d}$ are weight matrices.

A. 3 Decoder

The input of the decoder are the previous word y_{t-1} and the context vector c_{t}, the objective is to predict y_{t}. The hidden states of the decoder $s=\left(s_{1}, \ldots, s_{n}\right)$ are initialized with the mean of the context vectors:

$$
s_{0}=\tanh \left(W_{\text {init }} \frac{1}{m} \sum_{i=1}^{m} c_{i}\right)
$$

where $W_{\text {init }} \in \mathbb{R}^{d \times 2 d}$ is a weight matrix, m is the size of the source sentence. The following hidden states are calculated with a GRU conditioned over the context vector at tine t as follows:

$$
s_{t}=z_{t} \odot s_{t}^{\prime}+\left(1-z_{t}\right) \odot s_{t}^{\prime \prime}
$$

where

$$
\begin{aligned}
s_{t}^{\prime \prime} & =\tanh \left(E y_{t-1}+U\left[r_{t} \odot s_{t-1}\right]+C c_{t}\right) \\
z_{i} & =\sigma\left(W_{z} E y_{t-1}+U_{z} s_{t-1}+C_{z} c_{t}\right) \\
r_{i} & =\sigma\left(W_{r} E y_{t-1}+U_{r} s_{t-1}+C_{r} c_{t}\right)
\end{aligned}
$$

Here, $E \in \mathbb{R}^{e \times V}$ is the embedding matrix for the target language. $W, W_{z}, W_{r} \in \mathbb{R}^{d \times e}, U, U_{z}, U_{r} \in$ $\mathbb{R}^{d \times d}$, and $C, C_{z}, C_{r} \in \mathbb{R}^{d \times 2 d}$ are weight matrices. The intermediate vector s_{t}^{\prime} is calculated from a simple GRU:

$$
s_{t}^{\prime}=G R U\left(y_{t-1}, s_{t-1}\right)
$$

In the attention-based NMT model, the probability of a target word y_{t} is given by:

$$
\begin{array}{r}
p\left(y_{t} \mid s_{t}, y_{t-1}, c_{t}\right)=\operatorname{softmax}\left(W_{o} \tanh (\right. \\
\left.\left.W_{s t} s_{t}+W_{y t} y_{t-1}+W_{c t} c_{t}\right)\right)
\end{array}
$$

Here, $W_{o} \in \mathbb{R}^{V \times e}, W_{s t} \in \mathbb{R}^{e \times d}, W_{y t} \in \mathbb{R}^{e \times e}$, $W_{c t} \in \mathbb{R}^{e \times 2 d}$ are weight matrices.

A.3.1 Self-Attentive Residual Connections

In our model, the probability of a target word y_{t} is given by:

$$
\begin{aligned}
p\left(y_{t} \mid s_{t}, d_{t}, c_{t}\right)=\operatorname{softmax} & \left(W_{o} \tanh (\right. \\
& \left.\left.W_{s t} s_{t}+W_{d t} d_{t}+W_{c t} c_{t}\right)\right)
\end{aligned}
$$

Here, $W_{o} \in \mathbb{R}^{V \times e}, W_{s t} \in \mathbb{R}^{e \times d}, W_{d t}, W_{y t} \in$ $\mathbb{R}^{e \times e}, W_{c t} \in \mathbb{R}^{e \times 2 d}$ are weight matrices. The summary vector d_{t} can be calculated in different manners based on previous words y_{1} to y_{t-1}. First, a simple average:

$$
d_{t}^{a v g}=\frac{1}{t-1} \sum_{i=1}^{t-1} y_{i}
$$

The second, by using an attention mechanism:

$$
\begin{array}{r}
d_{t}^{\text {cavg }}=\sum_{i=1}^{t-1} \alpha_{i}^{t} y_{i} \\
\alpha_{i}^{t}=\frac{\exp \left(e_{i}^{t}\right)}{\sum_{j=1}^{t-1} \exp \left(e_{j}^{t}\right)} \\
e_{i}^{t}=v^{\top} \tanh \left(W_{y} y_{i}\right)
\end{array}
$$

where $v \in \mathbb{R}^{e}, W_{y} \in \mathbb{R}^{e \times e}$ are weight matrices.

A.3.2 Memory RNN

This model modifies the recurrent layer of the decoder as follows:

$$
s_{t}=z_{t} \odot s_{t}^{\prime}+\left(1-z_{t}\right) \odot s_{t}^{\prime \prime}
$$

where

$$
\begin{aligned}
s_{t}^{\prime \prime} & =\tanh \left(E y_{t-1}+U\left[r_{t} \odot \tilde{s}_{t}\right]+C c_{t}\right) \\
z_{i} & =\sigma\left(W_{z} E y_{t-1}+U_{z} \tilde{s}_{t}+C_{z} c_{t}\right) \\
r_{i} & =\sigma\left(W_{r} E y_{t-1}+U_{r} \tilde{s}_{t}+C_{r} c_{t}\right)
\end{aligned}
$$

Here, $E \in \mathbb{R}^{e \times V}$ is the embedding matrix for the target language. $W, W_{z}, W_{r} \in \mathbb{R}^{d \times e}, U, U_{z}, U_{r} \in$ $\mathbb{R}^{d \times d}$, and $C, C_{z}, C_{r} \in \mathbb{R}^{d \times 2 d}$ are weight matrices. The intermediate vector s_{t}^{\prime} is calculated from a simple GRU:

$$
s_{t}^{\prime}=G R U\left(y_{t-1}, \tilde{s}_{t}\right)
$$

The recurrent vector \tilde{s}_{t} is calculated as following:

$$
\tilde{s}_{t}=\sum_{i=1}^{t-1} \alpha_{i}^{t} s_{i}
$$

where

$$
\begin{aligned}
\alpha_{i}^{t} & =\frac{\exp \left(e_{i}^{t}\right)}{\sum_{j=1}^{t-1} \exp \left(e_{j}^{t}\right)} \\
e_{i}^{t} & =v^{\top} \tanh \left(W_{m} s_{i}+W_{s} s_{t}\right)
\end{aligned}
$$

where $v \in \mathbb{R}^{d}, W_{m} \in \mathbb{R}^{d \times d}$, and $W_{s} \in \mathbb{R}^{d \times d}$ are weight matrices.

A.3.3 Self-Attentive RNN

The formulation of this decoder is as following:

$$
\begin{array}{r}
p\left(y_{t} \mid y_{1}, \ldots, y_{t-1}, c_{t}\right) \approx \operatorname{softmax}\left(W_{o} \tanh (\right. \\
\left.\left.W_{s t} s_{t}+W_{y t} y_{t-1}+W_{c t} c_{t}+W_{m t} \tilde{s}_{t}\right)\right)
\end{array}
$$

Here, $W_{o} \in \mathbb{R}^{V \times e}, W_{s t} \in \mathbb{R}^{e \times d}, W_{y t} \in \mathbb{R}^{e \times e}$, $W_{c t} \in \mathbb{R}^{e \times 2 d}$, and $W_{m t} \in \mathbb{R}^{e \times d}$ are weight matrices.

$$
\begin{aligned}
\tilde{s}_{t} & =\sum_{i=1}^{t-1} \alpha_{i}^{t} s_{i} \\
\alpha_{i}^{t} & =\frac{\exp \left(e_{i}^{t}\right)}{\sum_{j=1}^{t-1} \exp \left(e_{j}^{t}\right)} \\
e_{i}^{t} & =v^{\top} \tanh \left(W_{m} s_{i}+W_{s} s_{t}\right)
\end{aligned}
$$

where $v \in \mathbb{R}^{d}, W_{m} \in \mathbb{R}^{d \times d}$, and $W_{s} \in \mathbb{R}^{d \times d}$ are weight matrices.

[^0]: ${ }^{1}$ https://github.com/nyu-dl/
 dl4mt-tutorial

