A Large-Scale Comparison of Historical Text Normalization Systems

Marcel Bollmann

🕿 marcel@di.ku.dk

The Data

- Historical corpora from **eight languages**
- Texts written between the 1300s and 1899

Datas	set/Language	Time Period	Genre	Size (Tokens)		
DEA	German (Anselm)	14 th -16 th c.	Religious	325,942		
DE _R	German (RIDGES)	1482-1652	Science	61,156		
EN	English	1386-1698	Letters	181,804		
ES	Spanish	15 th -19 th c.	Letters	121,449		
HU	Hungarian	1440-1541	Religious	167,514		
IS	Icelandic	15 th c.	Religious	61,779		
PT	Portuguese	15 th -19 th c.	Letters	276,352		
SL_B	Slovene (Bohorič)	1750-1840s	Diverse	61,833		
SL_G	Slovene (Gaj)	1840s-1899	Diverse	203,582		
SV	Swedish	1527-1812	Diverse	55,887		

The Systems

All systems are **token-level** approaches with **supervised** learning.

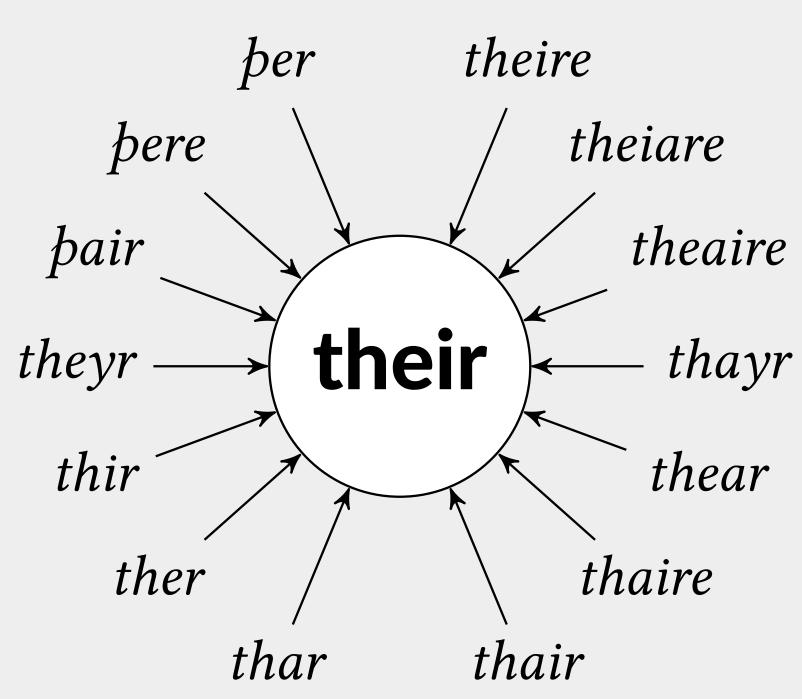
1 Norma (Bollmann, 2012)

- Implements wordlist lookup
- Has a **rule-based** component

 $b \rightarrow th / \#_e$

• Has a component based on (weighted) Levenshtein distance to lexicon entries

2 Statistical MT


Input:

- Uses Moses toolkit with GIZA++
- Implementation and settings provided by **cSMTiser** toolkit (Ljubešić et al., 2016)

🕑 @mmbollmann

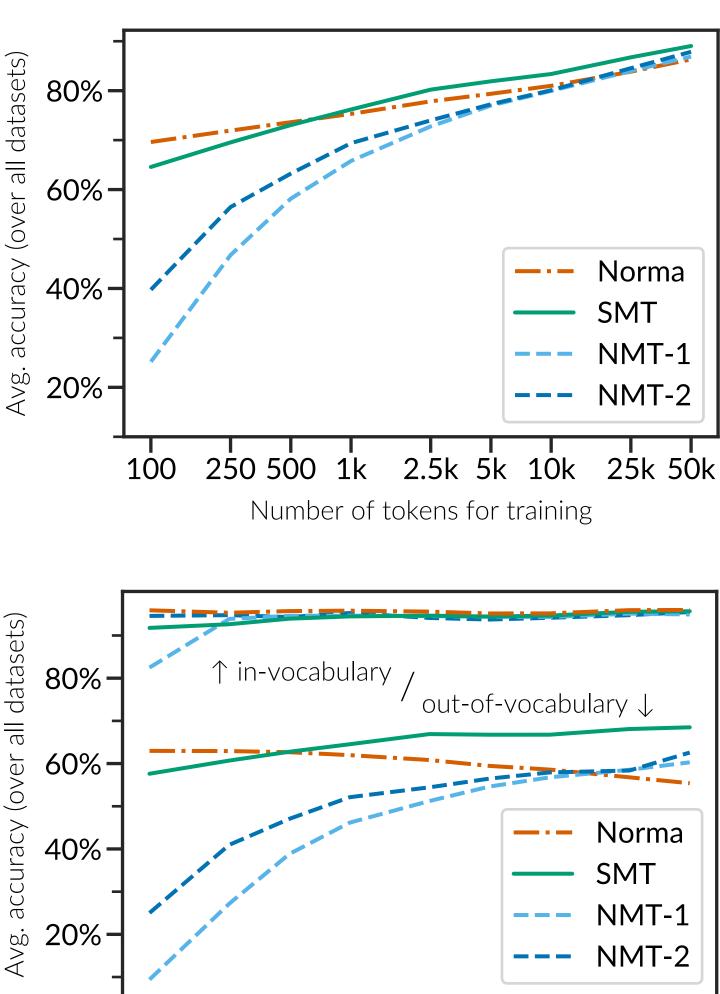
Normalization

is the mapping of historical (spelling) variants to a canonical (modern) form.

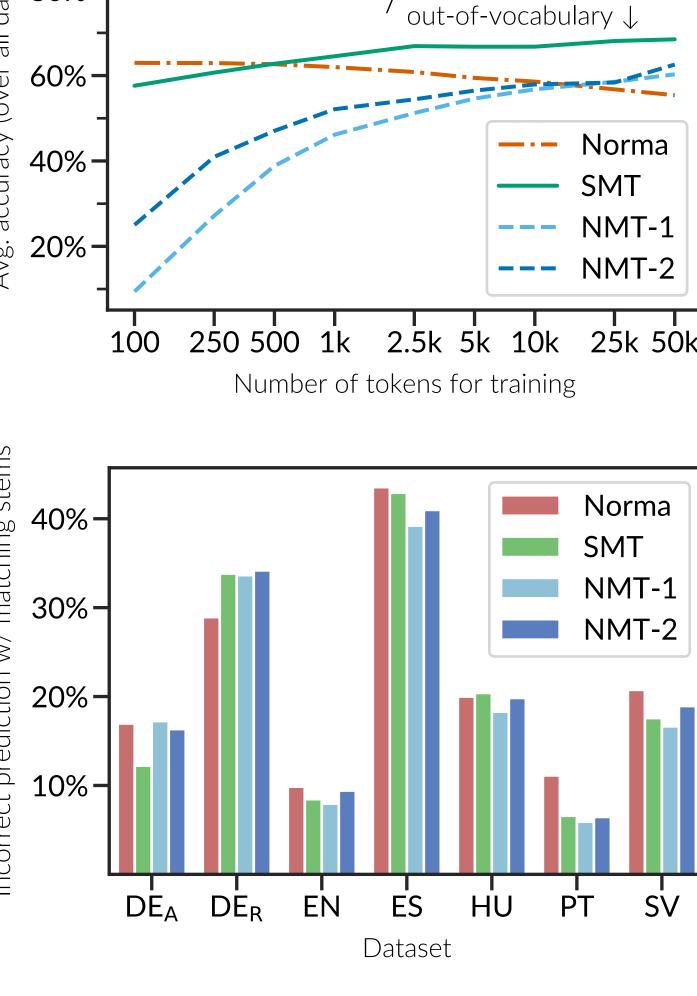
• Character-level "translation" of tokens

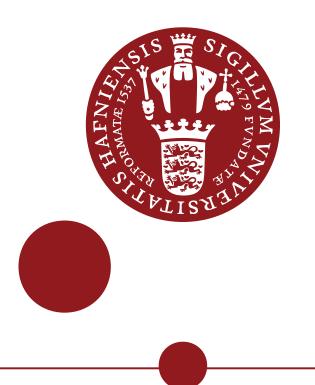
 $\langle w \rangle$ b e r $\langle w \rangle$ Output: <w> t h e i r </w>

3 Neural MT (seq2seq)


- Character-level encoder-decoder models
- NMT-1 (Bollmann, 2018):
 - LSTMs with dimensionality 300
 - Implemented with XNMT
- **NMT-2** (Tang et al., 2018):
- RNNs with dimensionality 1024
- Implemented with Marian

Datasets, code, instructions, etc.: **O** github.com/coastalcph/histnorm


Results


System	Dataset									
	DEA	DE _R	EN	ES	HU	IS	PT	SL _B	SL _G	SV
Norma (Bollmann, 2012)	88.0	86.6	94.6	94.4	86.8	*86.8	94.2	89.4	91.4	87.1
SMT (Ljubešić et al., 2016)	86.7	*88.2	95.2	*95.0	*91.7	*86.8	95.2	93.3	*96.0	*91.1
NMT-1 (Bollmann, 2018)	89.2	*88.1	94.8	*94.8	91.2	86.4	94.6	91.6	95.2	90.3
NMT-2 (Tang et al., 2018)	89.6	*88.2	95.0	*94.8	*91.6	*87.3	94.5	92.6	*95.8	90.4

Normalization accuracy on test data (* = difference not statistically significant)

Norma is a good option with little training data

(NMT might need more data?)

★ Best strategy is **lookup** for IV tokens and trained model (e.g. SMT) only for **OOV** tokens

★ Stemming can provide more nuanced view of datasets and prediction errors

[•] Marcel Bollmann. 2012. (Semi-)automatic normalization of historical texts using distance measures and the Norma tool. In Proceedings of ACRH-2, Lisbon, Portugal.

[•] Marcel Bollmann. 2018. Normalization of historical texts with neural network models. Bochumer Linguistische Arbeitsberichte, 22. (Revised and updated version of PhD thesis.)

[•] Nikola Ljubešić, Katja Zupan, Darja Fišer, and Tomaž Erjavec. 2016. Normalising Slovene data: historical texts vs. user-generated content. In Proceedings of KONVENS 2016, Bochum, Germany.

[•] Gongbo Tang, Fabienne Cap, Eva Pettersson, and Joakim Nivre. 2018. An evaluation of neural machine translation models on historical spelling normalization. In Proceedings of COLING 2018.