Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base

Scott Wen-tau Yih

 Ming-Wei Chang, Xiaodong He, Jianfeng Gao
Question Answering with Knowledge Base

- Large-scale Knowledge Base
- Properties of billions of entities
- Plus relations among them
- Question Answering
"What are the names of Obama's daughters?"
 λx.parent $($ Obama,$x) \wedge$ gender $(x$, Female)

Search Engine \rightarrow QA Engine

Generic Semantic Parsing (e.g., [Kwiatkowski+ 13])

Who is Justin Bieber's sister?

Jazmyn Bieber

KB-Specific Semantic Parsing (e.g., [Berant+ 13])

Who is Justin Bieber's sister?

Jazmyn Bieber

semantic parsing
λx. sibling_of(justin_bieber, $x) \wedge$ gender $(x$, female)

Key Challenges

- Language mismatch
- Lots of ways to ask the same question
"What was the date that Minnesota became a state?"
"When was the state Minnesota created?"
"Minnesota's date it entered the union?"
- Need to map them to the predicate defined in KB location.dated_location.date_founded
- Large search space
- Some Freebase entities have >160,000 immediate neighbors
- Compositionality

Staged Query Graph Generation Basic idea

- Query graph
- Resembles subgraphs of the knowledge base
- Can be directly mapped to a logical form in λ-calculus
- Semantic parsing
- A search problem that grows the graph through staged state-actions

Staged Query Graph Generation Addresses Key Challenges

- Language mismatch
- Advanced entity linking
- Relation matching via deep convolutional NN
- Large search space
- Representation power of a parse controlled by staged search actions
- Grounding partially the utterance during search
- Compositionality
- Possible combinations limited by local subgraphs

52.5\% F_{1} (Accuracy) on WebQuestions

Outline

- Introduction
- Background
- Graph knowledge base
- Query graph
- Staged Query Graph Generation (Our Approach)
- Experiments
- Conclusion

Knowledge Base

- Triples of subj-pred-obj $\left(e_{1}, p, e_{2}\right)$
- Knowledge graph
- Each entity is a node
- Two related entities linked by a directed edge (predicate)
- CVT node
- Compound value type
- Encode n-ary relations

Query Graph

Who first voiced Meg on Family Guy?

$\lambda x . \exists y . \operatorname{cast}($ FamilyGuy, $y) \wedge \operatorname{actor}(y, x) \wedge \operatorname{character}(y, \operatorname{MegGriffin})$

Inspired by [Reddy+ 14], but closer to λ-DCS [Liang 13]

Outline

- Introduction
- Background
- Staged Query Graph Generation (Our Approach)
- Link topic entity
- Identify core inferential chain
- Augment constraints
- Experiments
- Conclusion

Staged Query Graph Generation

- A search problem with staged states and actions Who first voiced Meg on Family Guy?
(1) Link Topic Entity

Staged Query Graph Generation

Who first voiced Meg on Family Guy?

(2) Identify Core Inferential Chain

Staged Query Graph Generation

Who first voiced Meg on Family Guy?

(3) Augment Constraints

Link Topic Entity

- An advanced entity linking system for short text Yang \& Chang, "S-MART: Novel Tree-based Structured Learning Algorithms Applied to Tweet Entity Linking." In ACL-15.
- Prepare surface-form lexicon \mathcal{L} for entities in the KB
- Entity mention candidates: all consecutive word sequences in \mathcal{L}, scored by the statistical model
- Up to 10 top-ranked entities are considered as topic entity

Identify Core Inferential Chain

- Relationship between topic and answer (x) entities
- Explore two types of paths
- Length 1 to non-CVT node

- Length 2 where y can be grounded to CVT

Who first voiced Meg on Family Guy?
 \square

$$
\text { \{cast-actor, writer-start, genre\} }
$$

Relation Matching using Deep Convolutional Neural Networks (DSSM [Shen+ 14])

- Input is mapped to two k-dimensional vectors
- Probability is determined by softmax of their cosine similarity

$$
P(R \mid P)=\frac{\exp \left(\cos \left(y_{R}, y_{P}\right)\right)}{\sum_{R^{\prime}} \exp \left(\cos \left(y_{R^{\prime}}, y_{P}\right)\right)}
$$

who voiced meg on $\langle e\rangle$
cast-actor

Augment Constraints

- Who first voiced Meg on Family Guy?
S_{3}

$\lambda x . \exists y . \operatorname{cast}($ FamilyGuy, $y) \wedge \operatorname{actor}(y, x)$

- One or more constraint nodes can be added to y or x
- y : Additional property of this event (e.g., character(y, MegGriffin))
- x : Additional property of the answer entity (e.g., gender)
- Only subset of constraint nodes are considered
- e.g., entities detected in the question (more detail in Appendix)

Learning Reward Function γ

- Judge whether a query graph is a correct semantic parse
- Log-linear model with pairwise ranking objective [Burges 10]

Who first voiced Meg on Family Guy?

Learning Reward Function γ

- Judge whether a query graph is a correct semantic parse
- Log-linear model with pairwise ranking objective [Burges 10]

Who first voiced Meg on Family Guy?

Learning Reward Function - Features

$q=$ Who first voiced Meg on Family Guy?

- Topic Entity
- Entity linking scores
- Core Inferential Chain

- Relation matching scores (NN models)
- Constraints: Keyword and entity matching
- ConstraintEntityWord("Meg Griffin", q) $=0.5$
- ConstraintEntitylnQuestion("Meg Griffin", q) = 1
- Overall
- $\operatorname{NumNodes(s)=5}$
- NumAnswers(s) = 1

Outline

- Introduction
- Background
- Staged Query Graph Generation (Our Approach)
- Experiments
- Data \& evaluation metric
- Creating training data from Q/A pairs
- Results
- Conclusion

WebQuestions Dataset [Berant+13]

- What character did Natalie Portman play in Star Wars? \Rightarrow Padme Amidala
- What currency do you use in Costa Rica? \Rightarrow Costa Rican colon
- What did Obama study in school? \Rightarrow political science
- What do Michelle Obama do for a living? \Rightarrow writer, lawyer
- What killed Sammy Davis Jr? \Rightarrow throat cancer
[Examples from Berant]
- 5,810 questions crawled from Google Suggest API and answered using Amazon MTurk
- 3,778 training, 2,032 testing
- A question may have multiple answers \rightarrow using Avg. F1 (~accuracy)

Creating Training Data from Q/A Pairs Relation Matching (Identifying Core Inferential Chain)

- List all the length $1 \& 2$ paths from any potential topic entity
- Treat any inferential chain resulting in $F_{1} \geq 0.5$ to create positive pairs

Pattern	Inferential Chain
what was <e> known for	people.person.profession
what kind of government does <e> have	location.country.form_of_government
what year were the <e> established	sports.sports_team.founded
what city was <e> born in	people.person.place_of_birth
what did <e> die from	people.deceased_person.cause_of_death
who married <e>	people.person.spouse_s people.marriage.spouse

Creating Training Data from Q/A Pairs Reward Function γ

- Apply the same best-first search procedure to training data
- Use the F_{1} score of the query graph as the reward function
- For each question, create 4,000 candidate query graphs
- All positive ($F_{1}>0$) examples
- Randomly selected negative examples

Avg. F1 (Accuracy) on WebQuestions Test Set

60

Contribution from Entity Linking

- Statistics of entity linking results on training set questions

Method	\#Entities	Covered Ques.	Labeled Ent.
Freebase API	19,485	98.8%	81.2%
Yang \& Chang, ACL-15	9,147	99.8%	87.8%

- F_{1} drops from 52.5% to 48.4% when using Freebase API

Contribution from Relation Matching

- F_{1} score of query graphs that have only a core inferential chain: 49.6 (vs. 52.5 full system)
- Questions from search engine users are short \& simple - $1,888(50 \%)$ training questions can be answered exactly ($F_{1}=1$)
- Even if the correct parse requires more constraints, the less constrained graph still gets a partial score

Error Analysis

A random sample of 100 incorrectly answered questions

- Label issues (34\%)
- Label error (2\%)
- Incomplete labels (17\%, e.g., "What songs did Bob Dylan write?")
- Acceptable answers (15\%, e.g., "Time in China" vs. "UTC+8")
- Incorrect entity linking (8\%)
- Incorrect inferential chain (35\%)
- Incorrect/Missing constraints (23\%)

Conclusions (1/2)

A new framework for semantic parsing of questions

- Query graph
- Meaning representation that can be directly mapped to logical form, using predicates in target KB
- Semantic parsing
- Query graph generation as staged search problem
- New state-of-the-art on WebQuestions (52.5 F F_{1})
- Advanced entity linking
- Convolutional NN for relation matching

Conclusions (2/2)

- Future Work
- Improve the current system
- Matching relations more accurately
- Handling constraints in a more principled way
- Joint structured-output prediction model (e.g., SEARN [Daumé III 06])
- Extend the query graph to represent more complicated questions
- Data \& Resource
- Sent2Vec (DSSM) http://aka.ms/sent2vec
- System output http://aka.ms/codalab-webq
- Intermediate files (e.g., entity linking, model files, training data, etc.) will be released soon http://aka.ms/stagg

