Appendix: Proof of Lemma 2.2.1

without the unknown. 150
Case II: In this case, the start is missing. Let 151
us say $T^{\prime}(n)$ denote the number of ways in 152
which a change concept can be instantiated 153
by the n variables in \mathbb{V}_{P} without the restric- 154
tion that the associated variables must contain 155
an unknown and where the start is missing. 156
Note that, $T^{\prime}(n)=n\left(3^{n-1}-1\right)$. Following 157
the similar argument as above, the number of 158
valid change applications in this case is equal 159
to $T^{\prime}(n)-T^{\prime}(n-1)$. 160
Thus the total number of change applications 161
is equal to $T(n)+T^{\prime}(n)-T(n-1)-T^{\prime}(n-$ 162
$1)$. After simplifying this we get the desired 163
result. 164
3. The unknown x can be assigned to any of 166165
the three slots large, small, differenece in 3
ways. For each such choice for the unknown 168
the remaining one of two slots can be filled in 169
$n-1$ ways and for each assignment of the un- 170
known and the one of the two slots, the other 171
can be filled in $n-2$ ways. 172
4. This follows as we currently consider only 173
three applications and applications of differ- 174
ent formulas are different from each other. 175
176177

