

TWEETS

513

FOLLOWING

673

FOLLOWERS

14,344

@robvanderg

Abstract

This work explores normalization for parser adaptation. Traditionally, normalization is used as separate preprocessing step. We show that integrating the normalization model into the parsing algorithm is beneficial. To this end, we use a normalization model combined with the parsing as intersection algorithm. This way, multiple normalization candidates can be leveraged, which improves parsing performance on social media. We test this hypothesis by modifying the Berkeley parser; outof-the-box it reaches an F1 score of 66.52. Our integrated approach performs significantly better, with an F1 score of 67.36, while using the best normalization sequence results in an F1 score of only 66.94.

- **Groningen**
- 🛗 July 2017
- @ r.van.der.goot@rug.nl
- Swww.bitbucket.org/robvanderg/berkeleygraph
- Swww.bitbucket.org/robvanderg/monoise

O Previous photos and videos

new pix comming tomoroe

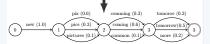
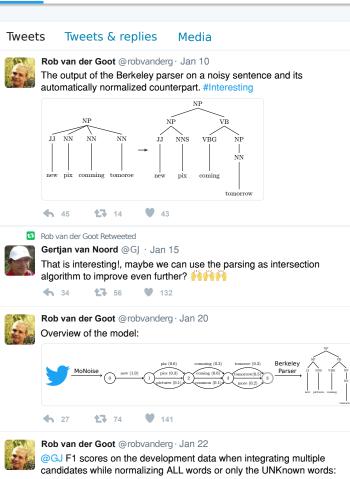
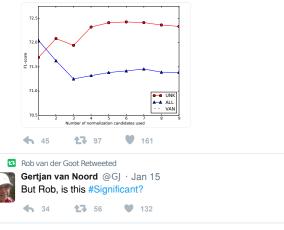




Figure 1: The output of the normalization model for the sentence 'new pix comming tomoroe'.

Corpus	Sents	Words/	Unk%
		sent	
WSJ (2-21)	39,832	23.9	4.4
EWT	16,520	15.3	3.7
Foster et al. (2011)	269	11.1	9.3
Li and Liu (2014)	2,577	15.7	14.1

Table 1: Some basic statistics for our training and development corpora. % of unknown words (Unk) calculated against the Aspell dictionary ignoring capitalization.

Rob van der Goot @robvanderg · 3h @GJ, it is! These are the F1 scores of our proposed models and previous work on the test set, trained on the EWT and WSJ, tested on a small

Back to top 1

.01 and at P<0.05

Parser	Dev	Test
Stanford parser	66.05	61.95
Berkeley parser	70.85	66.52
Best norm. seq.	72.04	66.94
Integrated norm.	72.77	67.36*
Gold POS tags	74.98	71.80
StatisticalSignific	ant agai	inst Berk

You may also like . Refresh

Yehoshua Bar-Hillel, Micha Perles... On formal properties of simple phra...

_+ Follow

Jennifer Foster, Ozlem C, etinoglu... #hardtoparse: POS Tagging and pa...

Chen Li and Yang Liu Joint POS tagging and text nomaliz...

Slav Petrov and Dan Klein Improved inference for unlexicalized...

Worldwide Trends

#ParsingAsIntersection 33.9K Tweets

#ACL2017 152K Tweets

#normalization 35.1K Tweets

#NeuralNetworks 74.1K Tweets

#ConstituencyParsing 24.7K Tweets

#WordEmbeddings 57.3K Tweets

© 2017 Twitter About Help Center Terms Privacy policy Cookies Ads info

