Straight to the Tree: Constituency Parsing with Neural Syntactic Distance

Yikang Shen*, Zhouhan Lin*, Athul Paul Jacob, Alessandro Sordoni, Aaron Courville, Yoshua Bengio

University of Montreal, Microsoft Research, University of Waterloo

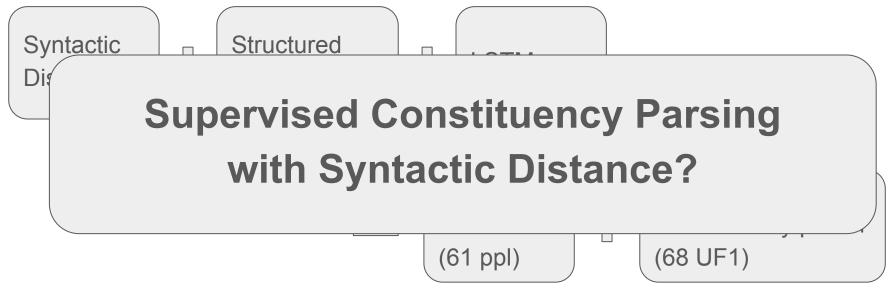
Overview

- Motivation
- Syntactic Distance based Parsing Framework
- Model
- Experimental Results

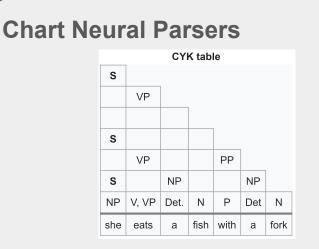
Overview

- Motivation
- Syntactic Distance based Parsing Framework
- Model
- Experimental Results

ICLR 2018: Neural Language Modeling by Jointly Learning Syntax and Lexicon



[Shen et al. 2018]



- High computational cost: Complexity of CYK is O(n^3).
- 2. Complicated loss function:

 $\max\left(0, \max_{T} \left[s(T) + \Delta(T, T^*)\right] - s(T^*)\right)$

Transition based Neural Parsers

S	steps	structural action	label action	stack after	bracket
NP VP	1-2	sh(I/PRP)	label-NP	0	₀ NP ₁
	3–4	sh(do/MD)	nolabel	$0 \square 1 \square 2$	
PRP MD VBP S	5-6	sh(like/VBP)	nolabel	$_0 \bigtriangleup_1 \bigtriangleup_2 \bigtriangleup_3$	
	7–8	comb	nolabel	$0 \square 1 \square 3$	
$_{0}$ I $_{1}$ do $_{2}$ like VP	9–10	sh(eating/VBG)	nolabel	$0 \square 1 \square 3 \square 4$	
VBG NP	11-12	sh(fish/NN)	label-NP	$0 \square 1 \square 3 \square 4 \square 5$	4NP5
	13-14	comb	label-S-VP	$_0 \bigtriangleup_1 \bigtriangleup_3 \bigtriangleup_5$	3S5, 3VP5
3 eating NN	15-16	comb	label-VP	$0 \bigtriangleup 1 \bigtriangleup 5$	$_1VP_5$
C-L	17-18	comb	label-S	$0 \bigtriangleup 5$	0S5
4 fish 5					
(a) gold parse tree		(b) static oracle	e actions	

- Greedy decoding: Incompleted tree (the shift and reduce steps may not match).
- 2. Exposure bias

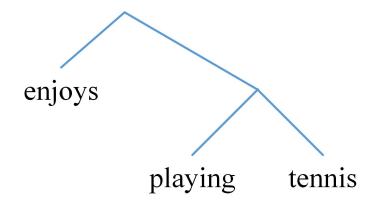
The model is never exposed to its own mistakes during training

[Stern et al., 2017; Cross and Huang, 2016]

Overview

- Motivation
- Syntactic Distance based Parsing Framework
- Model
- Experimental Results

Intuitions



Only the order of split (or combination) matters for reconstructing the tree.

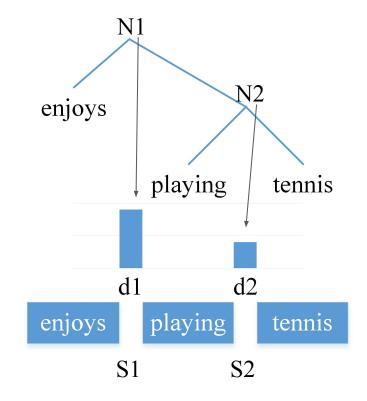
Can we model the order directly?

Syntactic distance

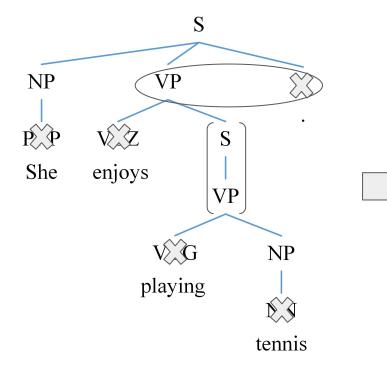
Definition 2.1. Let **T** be a parse tree that contains a set of leaves $(w_0, ..., w_n)$. The height of the lowest common ancestor for two leaves (w_i, w_j) is noted as \tilde{d}_j^i . The syntactic distances of **T** can be any vector of scalars $\mathbf{d} = (d_1, ..., d_n)$ that satisfy:

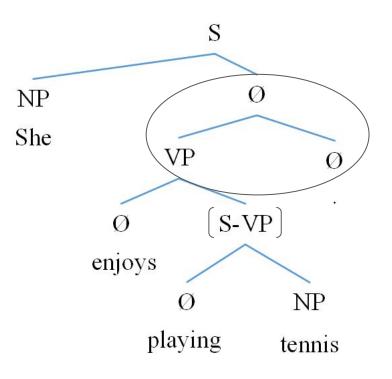
$$\operatorname{sign}(d_i - d_j) = \operatorname{sign}(\tilde{d}_i^{i-1} - \tilde{d}_j^{j-1}) \qquad (1$$

For each **split point**, their **syntactic distance** should share the same order as the height of **related node**



Convert to binary tree





[Stern et al., 2017]

Tree to Distance

The height for each non-terminal node is the maximum height of its children plus 1 Algorithm 1 Binary Parse Tree to Distance

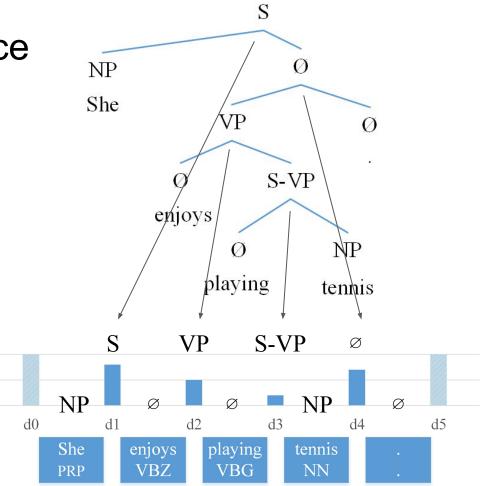
(\cup represents the concatenation operator of lists)

- 1: **function** DISTANCE(node)
- 2: **if** node **is** leaf **then**
- 3: $\mathbf{d} \leftarrow []$
- 4: $\mathbf{c} \leftarrow []$
- 5: $\mathbf{t} \leftarrow [\text{node.tag}]$
- 6: $h \leftarrow 0$

7: **else**

- 8: $\operatorname{child}_l, \operatorname{child}_r \leftarrow \operatorname{children} \operatorname{of} \operatorname{node}$
- 9: $\mathbf{d}_l, \mathbf{c}_l, \mathbf{t}_l, h_l \leftarrow \text{Distance}(\text{child}_l)$
- 10: $\mathbf{d}_r, \mathbf{c}_r, \mathbf{t}_r, h_r \leftarrow \text{Distance}(\text{child}_r)$
- 11: $h \leftarrow \max(h_l, h_r) + 1$
- 12: $\mathbf{d} \leftarrow \mathbf{d}_l \cup [h] \cup \mathbf{d}_r$
- 13: $\mathbf{c} \leftarrow \mathbf{c}_l \cup [\text{node.label}] \cup \mathbf{c}_r$
- 14: $\mathbf{t} \leftarrow \mathbf{t}_l \cup \mathbf{t}_r$
- 15: **end if**
- 16: **return d**, **c**, **t**, *h*
- 17: end function

Tree to Distance



Distance to Tree

Split point for each bracket is the one with maximum distance. Algorithm 2 Distance to Binary Parse Tree

- 1: function TREE(d,c,t)
- 2: **if** $\mathbf{d} = []$ **then**

3: node
$$\leftarrow$$
 Leaf(t)

else
$$i \leftarrow \arg \max_i(\mathbf{d})$$

$$\operatorname{child}_l \leftarrow \operatorname{Tree}(\mathbf{d}_{< i}, \mathbf{c}_{< i}, \mathbf{t}_{< i})$$

$$\operatorname{child}_r \leftarrow \operatorname{Tree}(\mathbf{d}_{>i}, \mathbf{c}_{>i}, \mathbf{t}_{\geq i})$$

8: node
$$\leftarrow$$
 Node(child_l, child_r, \mathbf{c}_i)

9: **end if**

4:

5:

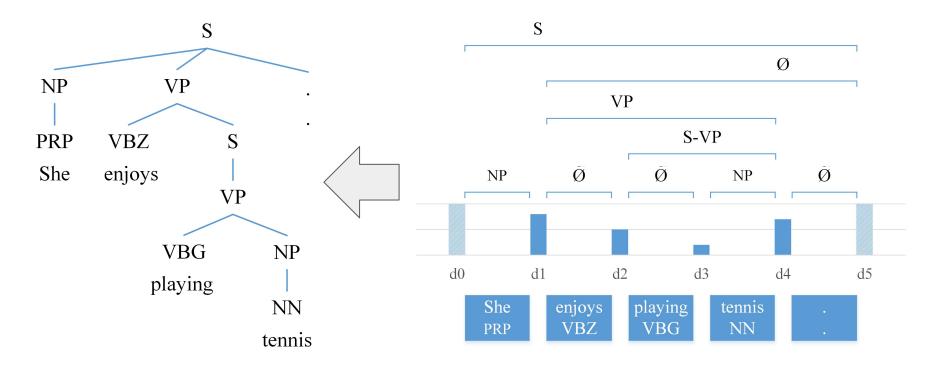
6:

7:

10: **return** node

11: end function

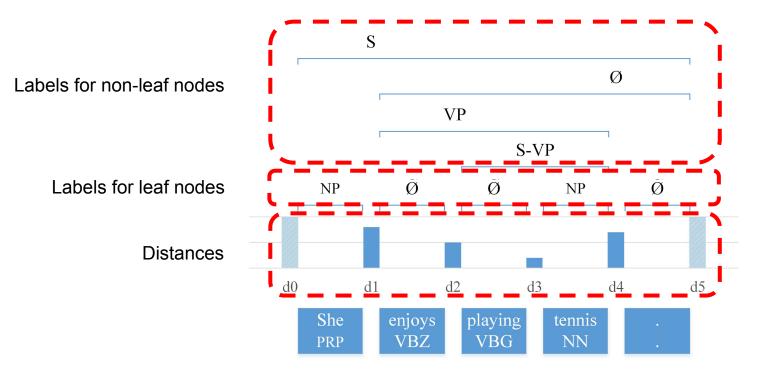
Distance to Tree



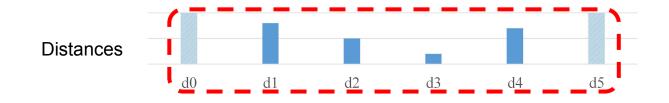
Overview

- Motivation
- Syntactic Distance based Parsing Framework
- Model
- Experimental Results

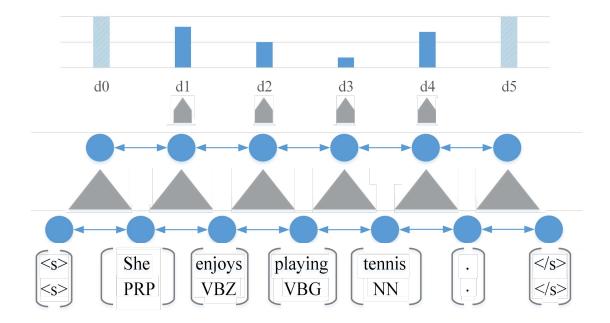
Framework for inferring the distances and labels



Inferring the distances



Inferring the distances



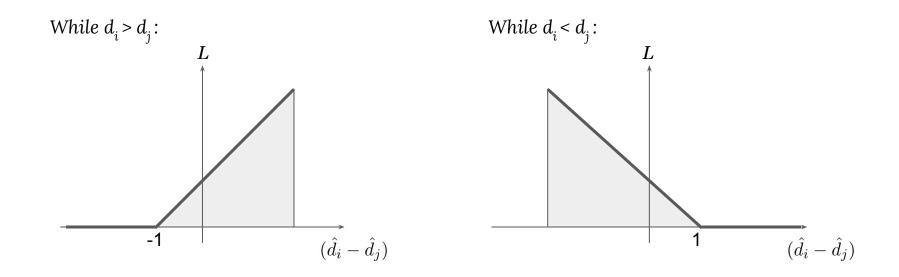
Pairwise learning-to-rank loss for distances

$$L_{\text{dist}}^{\text{rank}} = \sum_{i,j>i} [1 - \text{sign}(d_i - d_j)(\hat{d}_i - \hat{d}_j)]^+$$
$$\text{sign}(x) = \begin{cases} 1, & x > 0\\ 0, & x = 0\\ -1, & x < 0 \end{cases}$$

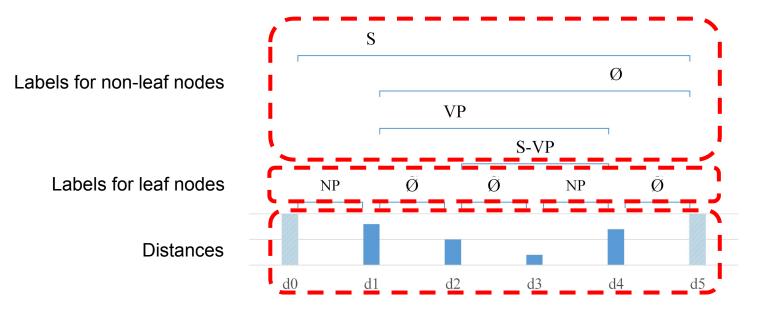
a variant of hinge loss

Pairwise learning-to-rank loss for distances

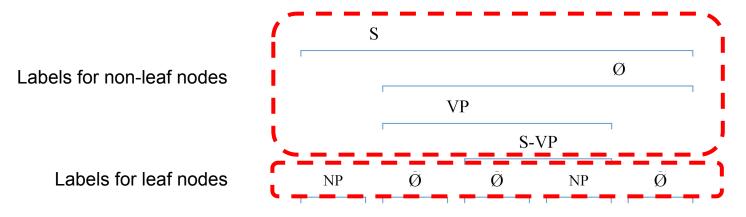
$$L_{\text{dist}}^{\text{rank}} = \sum_{i,j>i} [1 - \text{sign}(d_i - d_j)(\hat{d}_i - \hat{d}_j)]^+$$



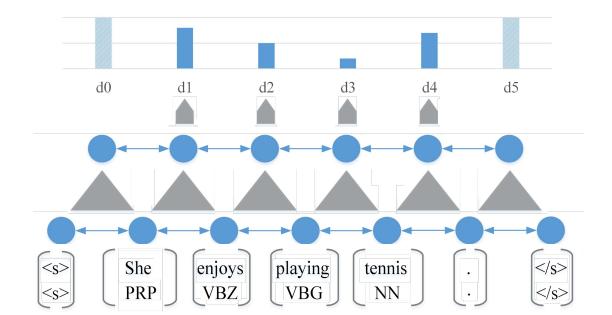
Framework for inferring the distances and labels



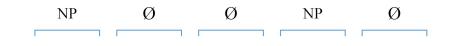
Framework for inferring the distances and labels

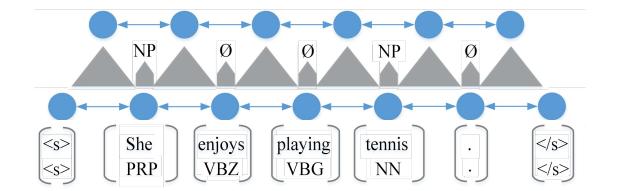


Inferring the Labels

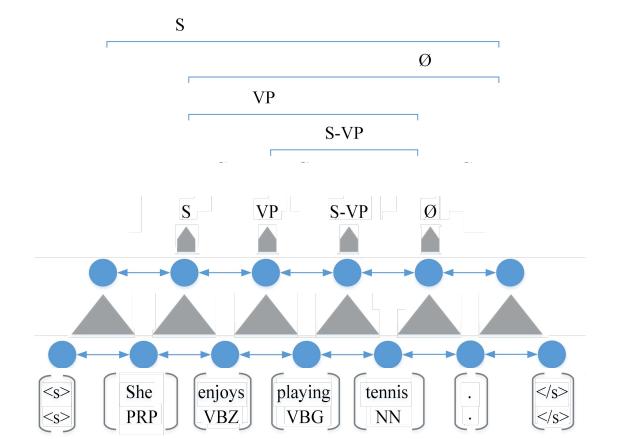


Inferring the Labels

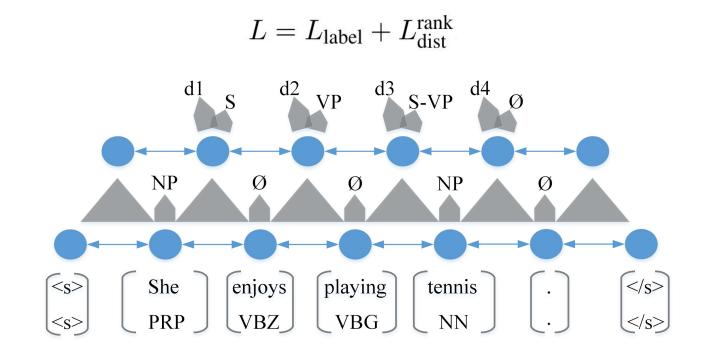




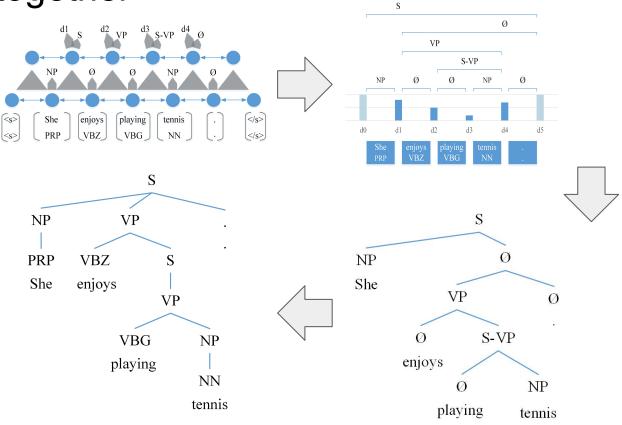
Inferring the Labels



Putting it together



Putting it together



Overview

- Motivation
- Syntactic Distance based Parsing Framework
- Model
- Experimental Results

Experiments: Penn Treebank

Model	LP	LR	F1
Single Model			
Vinyals et al. (2015)	-	-	88.3
Zhu et al. (2013)	90.7	90.2	90.4
Dyer et al. (2016)	-	-	89.8
Watanabe and Sumita (2015)	-	-	90.7
Cross and Huang (2016)	92.1	90.5	91.3
Liu and Zhang (2017b)	92.1	91.3	91.7
Stern et al. (2017a)	93.2	90.3	91.8
Liu and Zhang (2017a)	-	-	91.8
Gaddy et al. (2018)	-	-	92.1
Stern et al. (2017b)	92.5	92.5	92.5
Our Model	92.0	91.7	91.8

Ensemble			
Shindo et al. (2012)	-	-	92.4
Vinyals et al. (2015)	-	-	90.5
Semi-supervised			
Zhu et al. (2013)	91.5	91.1	91.3
Vinyals et al. (2015)	-	-	92.8
Re-ranking			
Charniak and Johnson (2005)	91.8	91.2	91.5
Huang (2008)	91.2	92.2	91.7
Dyer et al. (2016)	-	-	93.3

Experiments: Chinese Treebank

Model	LP	LR	F1
Single Model			
Charniak (2000)	82.1	79.6	80.8
Zhu et al. (2013)	84.3	82.1	83.2
Wang et al. (2015)	-	-	83.2
Watanabe and Sumita (2015)	-	-	84.3
Dyer et al. (2016)	-	-	84.6
Liu and Zhang (2017b)	85.9	85.2	85.5
Liu and Zhang (2017a)	-	-	86.1
Our Model	86.6	86.4	86.5

Semi-supervised			
Zhu et al. (2013)	86.8	84.4	85.6
Wang and Xue (2014)	-	-	86.3
Wang et al. (2015)	-	-	86.6
Re-ranking			
Charniak and Johnson (2005)	83.8	80.8	82.3
Dyer et al. (2016)	-	-	86.9

Experiments: Detailed statistics in PTB and CTB

dev/	test result	Prec.	Recall	F1	label accuracy
РТВ		91.7/92.0			94.9/95.4%
FID	unlabeled	93.0/93.2	93.0/92.8	93.0/93.0	94.9/93.470
СТВ		89.4/86.6			92.2/91.1%
CID	unlabeled	91.1/88.9	91.1/88.6	91.1/88.8	92.2/91.170

Experiments: Ablation Test

Model	LP	LR	F1
Full model	92.0	91.7	91.8
w/o top LSTM	91.0	90.5	90.7
w. Char LSTM	92.1	91.7	91.9
w. embedding	91.9	91.6	91.7
w. MSE loss	90.3	90.0	90.1

Experiments: Parsing Speed

Model	# sents/sec
Petrov and Klein (2007)	6.2
Zhu et al. (2013)	89.5
Liu and Zhang (2017b)	79.2
Stern et al. (2017a)	75.5
Our model	111.1
Our model w/o tree inference	351

Conclusions and Highlights

- A novel constituency parsing scheme: predicting tree structure from a set of real-valued scalars (syntactic distances).
- Completely free from compounding errors.
- Strong performance compare to previous models, and
- Significantly more efficient than previous models
- **Easy deployment**: The architecture of model is no more than a stack of standard recurrent and convolutional layers.

One more thing...

- The research in rank loss is well-studied in the topic of learning-to-rank, since 2005 (Burges et al. 2005).
- Models that are good at learning these syntactic distances are not widely known until the rediscovery of LSTM in 2013 (Graves 2013).
- Efficient regularization methods for LSTM didn't become mature until 2017 (Merity 2017).

Thank you!

Yikang Shen, Zhouhan Lin MILA, Université de Montréal {yikang.shn, lin.zhouhan}@gmail.com

Paper:

