Domain Adaptation for Constituency Parsing Using Partial Annotations

Vidur Joshi Matthew Peters Mark Hopkins

Constituency Parsing is Useful

Textual Entailment (Bowman et al., 2016)

Semantic Parsing (Hopkins et al., 2017)

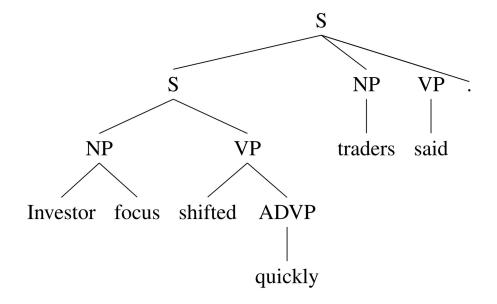
Sentiment Analysis (Socher et al., 2013)

Language Modeling (Dyer et al., 2016)

Penn Tree Bank (PTB) (Marcus et al., 1993)

40,000 annotated sentences

Newswire domain



But, Target Domains Are Diverse!

Geometry Problem:

In the rhombus PQRS, PR = 24 and QS = 10.

Question:

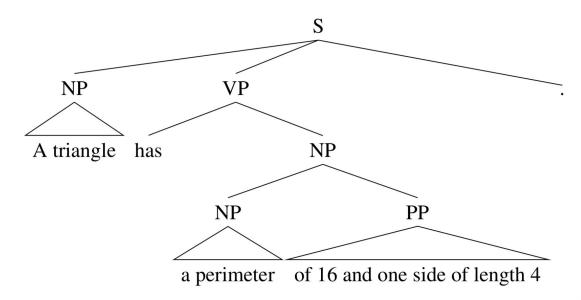
What's the second-most-used vowel in English?

Biochemistry:

Ethoxycoumarin was metabolized by isolated epidermal cells via dealkylation to 7-hydroxycoumarin (7-OHC) and subsequent conjugation.

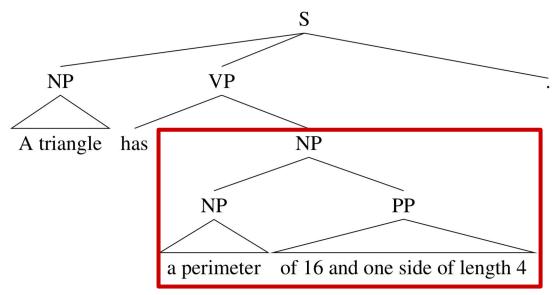
Performance Outside Source Domain

Parse geometry sentence with PTB trained parser



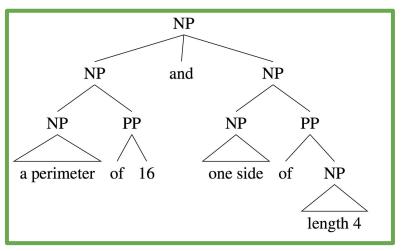
Performance Outside Source Domain

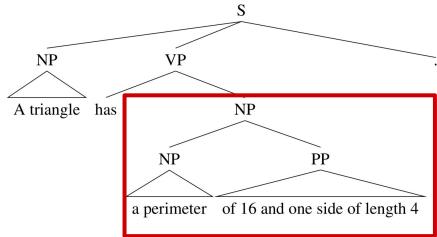
Parse geometry sentence with PTB trained parser



Performance Outside Source Domain

Parse geometry sentence with PTB trained parser





How can we cheaply create high quality parsers for new domains?

Relevant Recent Developments in NLP

Contextualized word representations improve sample efficiency. (Peters et al., 2018)

Span-focused models achieve state-of-the-art constituency parsing results. (Stern et al., 2017)

Contributions

Show contextual word embeddings help domain adaptation. E.g., Over 90% F1 on Brown Corpus.

Adapt a parser using partial annotations.

E.g., Increase correct geometry-domain parses by 23%.

Outline

Review Contextual Word Representations

Partial Annotations:

Definition

Training

Parsing as Span Classification

The Span Classification Model

Experiments and Results:

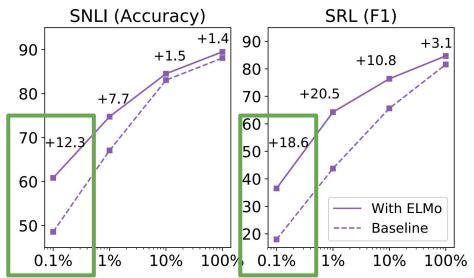
Performance on PTB and new Domains
Adapting Using Partial Annotations

Contextualized Word Representations

ELMo trained on Billion Word Corpus (Peters et al., 2018).

Contextualized Word Representations

ELMo trained on Billion Word Corpus (Peters et al., 2018).



Improve sample efficiency

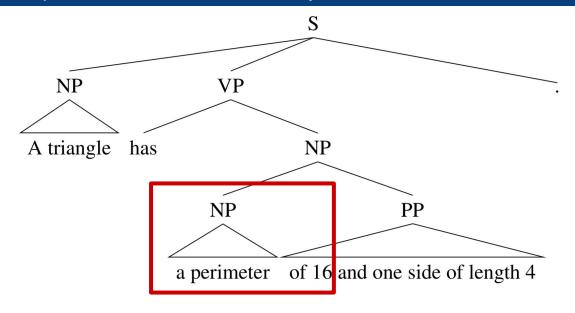
Partial Annotations

Definition

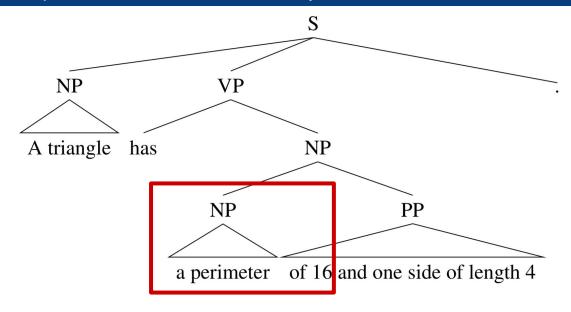
Training

Parsing as Span Classification

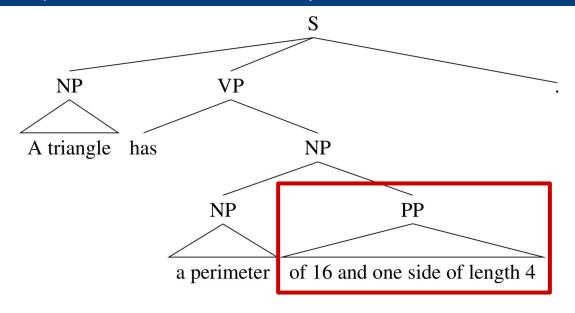
The Span Classification Model



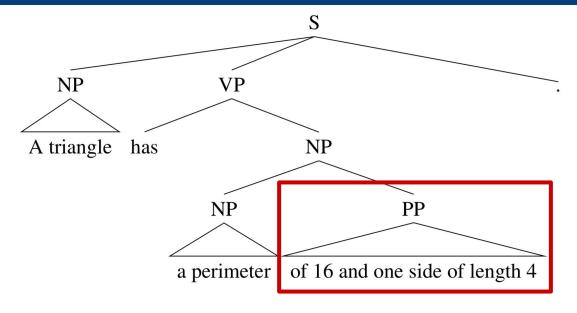
A triangle has a perimeter of 16 and one side of length 4.



A triangle has [a perimeter of 16] and one side of length 4.



A triangle has [a perimeter of 16] and one side of length 4.



A triangle has [a perimeter {of 16] and one side of length 4}.

Full Versus Partial Annotation

(S (NP A triangle) (VP has (NP (NP (NP a perimeter) (PP of 16)) and (NP (NP one side) (PP of (NP length 4))))).)

A triangle has [a perimeter {of 16] and one side of length 4}.

Partial Annotation Definition

Partial annotation is a labeled span.

A triangle has [a perimeter of 16] and one side of length 4.

A triangle has [NP a perimeter of 16] and one side of length 4.

A triangle has a perimeter {of 16 and one side of length 4}.

Why Partial Annotations?

Allowing annotators to selectively annotate important phenomena, makes the process faster and simpler.

(Mielens et al., 2015)

Definition

Training

Parsing as Span Classification

The Span Classification Model

Objective for Full Annotation

$$\mathcal{L}(\theta) = -\sum_{\text{(sentence, parse)}} \log \Pr_{\theta}(\text{parse}|\text{sentence})$$

Objective for Partial Annotation

Since we do not have a full parse,

marginalize out components for which no supervision exists.

$$\mathcal{L}(heta) = -\sum_{ ext{(sentence, annotations)}} \log \left(\sum_{ ext{parses consistent with annotations}} ext{Pr}_{ heta}(ext{parse}| ext{sentence})
ight)$$

Objective for Partial Annotation

Marginalize out components for which no supervision exists.

$$\mathcal{L}(heta) = -\sum_{ ext{(sentence, annotations)}} \log \left(\sum_{ ext{parses consistent with annotations}} \Pr_{ heta}(ext{parse}| ext{sentence})
ight)$$

Expensive!

One Solution: Approximation*

$$\mathcal{L}(heta) = -\sum_{ ext{(sentence, annotations)}} \log \left(\sum_{ ext{top k parses consistent with annotations}} \Pr_{ heta}(ext{parse}| ext{sentence})
ight)$$

Assume probability of a parse factors into a product of probabilities.

$$\Pr_{\theta}(\text{parse}|\text{sentence}) = \prod_{\text{(span,label) consistent with parse}} \Pr_{\theta}(\text{label}|\text{sentence}, \text{span})$$

Assume probability of a parse factors into a product of probabilities.

$$\Pr_{\theta}(\text{parse}|\text{sentence}) = \prod_{\text{(span,label) consistent with parse}} \Pr_{\theta}(\text{label}|\text{sentence}, \text{span})$$

Assume probability of a parse factors into a product of probabilities.

$$\Pr_{\theta}(\text{parse}|\text{sentence}) = \prod_{\substack{\text{(span,label) consistent with parse}}} \Pr_{\theta}(\text{label}|\text{sentence}, \text{span})$$

Assume probability of a parse factors into a product of probabilities.

$$\Pr_{\theta}(\text{parse}|\text{sentence}) = \prod_{\text{(span,label) consistent with parse}} \Pr_{\theta}(\text{label}|\text{sentence}, \text{span})$$

Objective now simplifies to:

$$\mathcal{L}(\theta) = -\sum_{\text{(sentence, annotations) (span, label)} \in \text{annotations}} \log \Pr_{\theta}(\text{label}|\text{sentence, span})$$

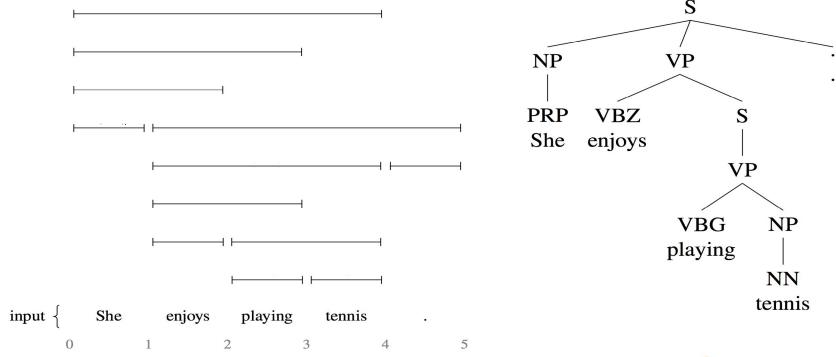
Easy if model classifies spans!

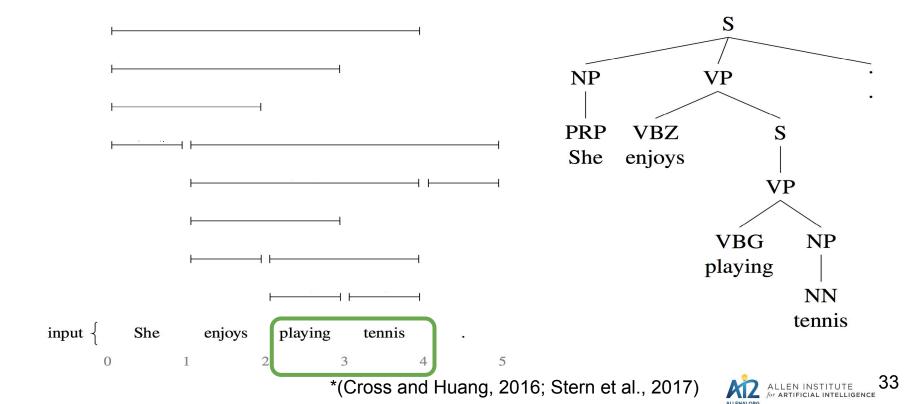
Definition

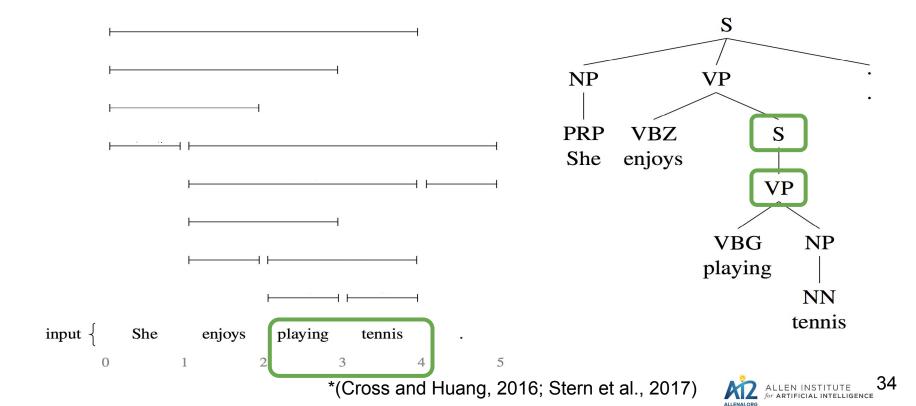
Training

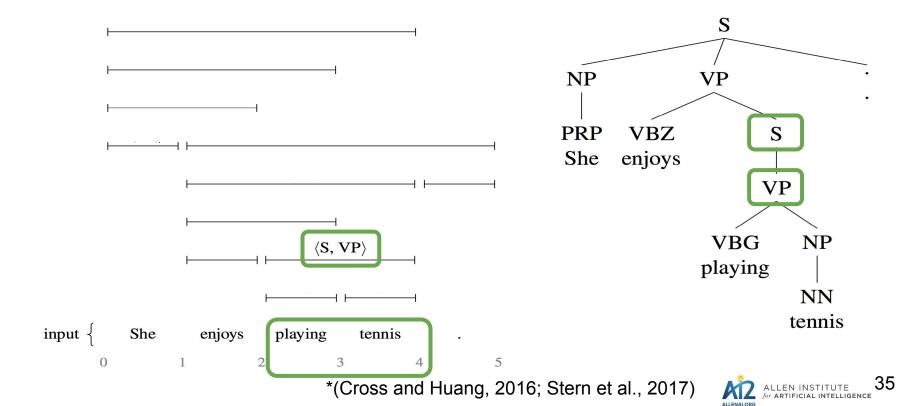
Parsing as Span Classification

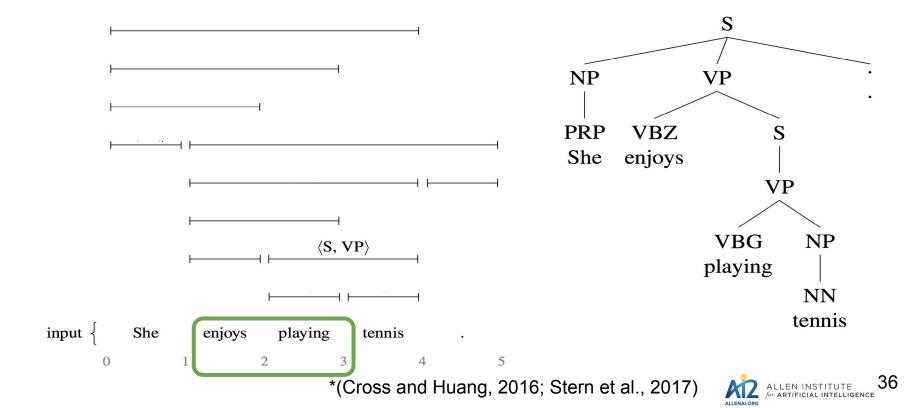
The Span Classification Model

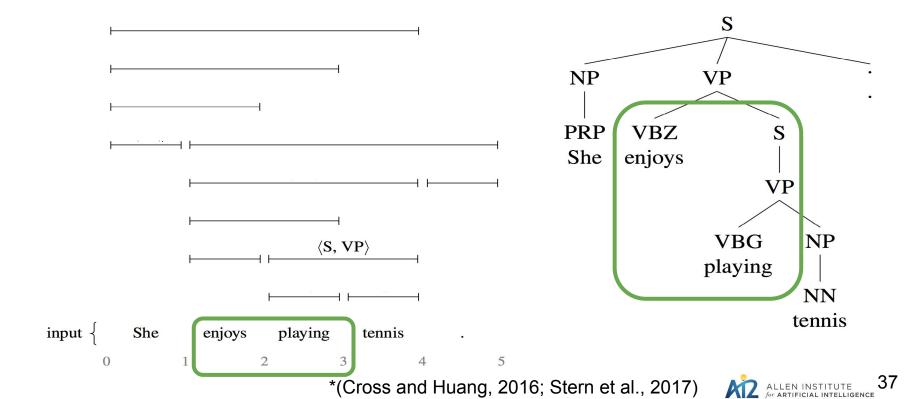


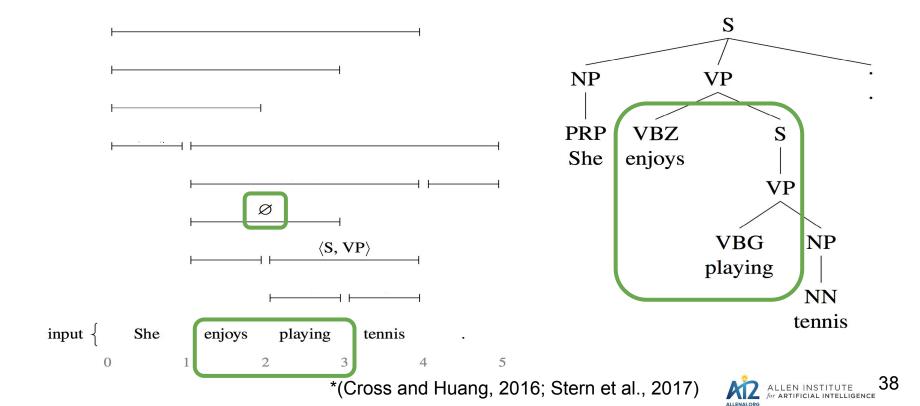


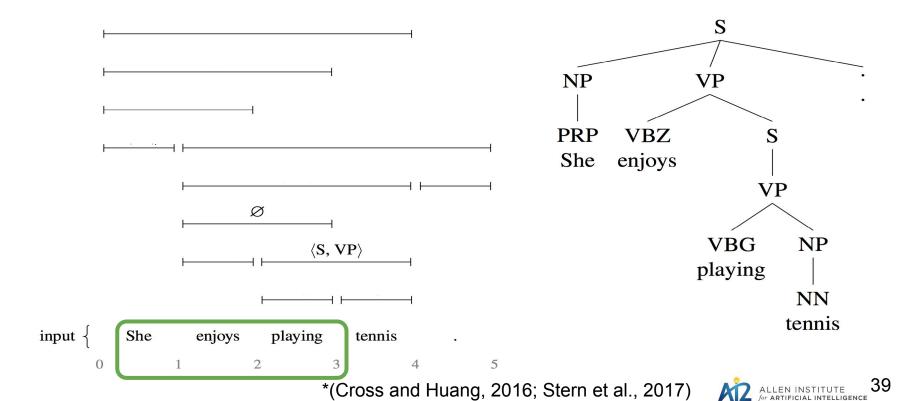


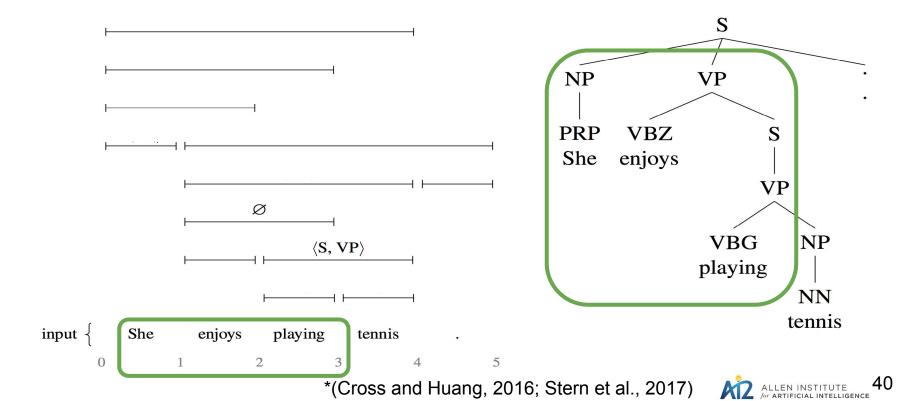


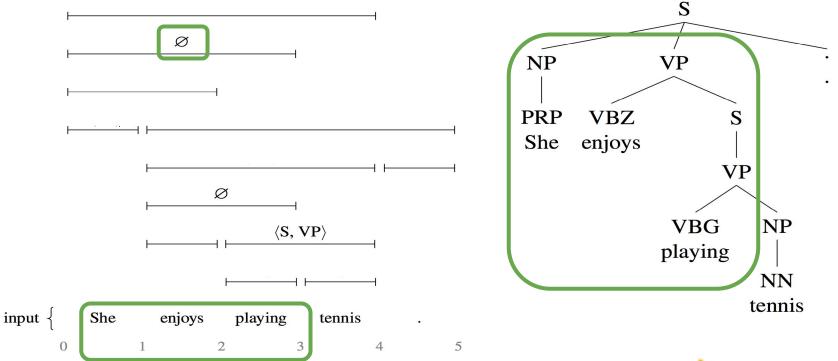




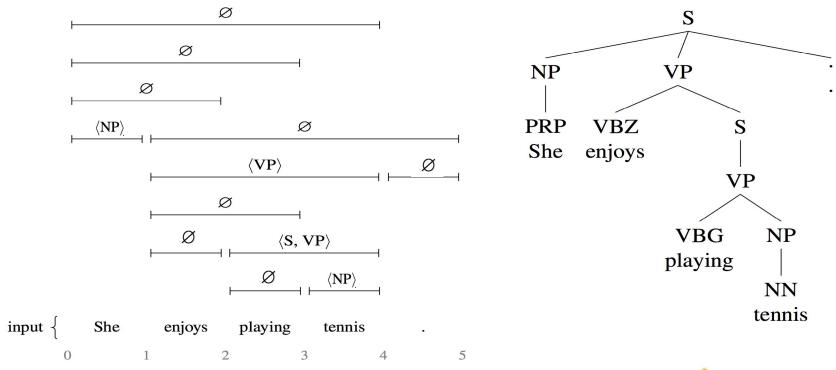








*(Cross and Huang, 2016; Stern et al., 2017)



Training on Full and Partial Annotations

- A partial annotation is a labeled span.
- A full parse labels every span in the sentence.

Therefore, training on both is identical under our derived objective.

$$\mathcal{L}(\theta) = -\sum_{\text{(span,label,sentence)}} \log \Pr_{\theta}(\text{label}|\text{sentence}, \text{span})$$

Parsing Using Span Classification Model

Find maximum using dynamic programming:

$$\Pr_{\theta}(\text{parse}|\text{sentence}) = \prod_{\text{span} \in \text{spans}} \Pr_{\theta}(\text{label of span in parse}|\text{sentence}, \text{span})$$

Summary

Partial annotations are labeled spans.

Summary

Partial annotations are labeled spans.

Use a span classification model to parse.

Summary

Partial annotations are labeled spans.

Use a span classification model to parse.

Training on partial and full annotations becomes identical.

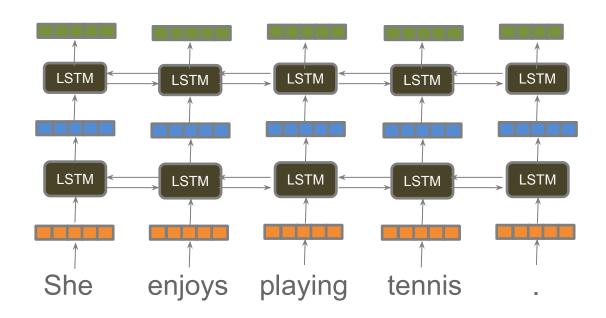
Definition

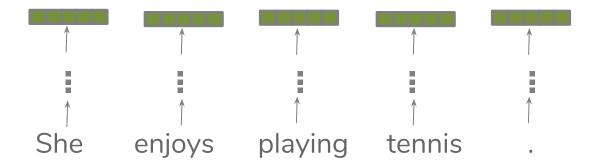
Training

Parsing as Span Classification

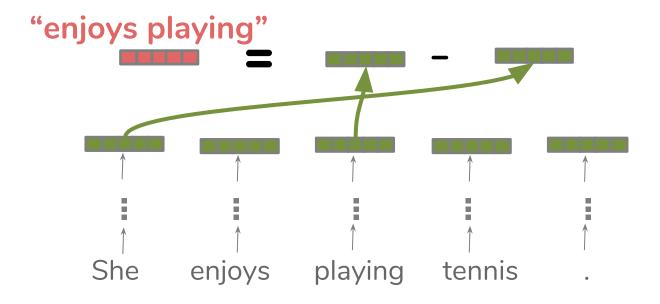
The Span Classification Model

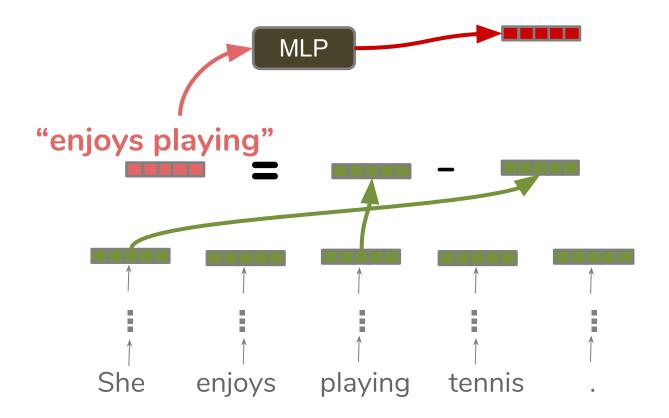
She enjoys playing tennis





Span Embedding (Wang and Chang, 2016; Cross and Huang, 2016; Stern et al., 2017)





	Ours	Stern et al., 2017
Objective	Maximum likelihood on labels	Maximum margin on trees
ELMo	Yes	No
POS Tags as Input	No	Yes

	Ours	Stern et al., 2017
Objective	Maximum likelihood on labels	Maximum margin on trees
ELMo	Yes	No
POS Tags as Input	No	Yes

	Ours	Stern et al., 2017
Objective	Maximum likelihood on labels	Maximum margin on trees
ELMo	Yes	No
POS Tags as Input	No	Yes

	Ours	Stern et al., 2017
Objective	Maximum likelihood on labels	Maximum margin on trees
ELMo	Yes	No
POS Tags as Input	No	Yes

Experiments and Results

Performance on PTB

Learning Curve on New Domains

Adapting Using Partial Annotations

91.8 F1

Stern et al., 2017

+0.3 F1

+Maximum Likelihood on Labels
-POS tags

+2.2 F1
+ELMo

94.3 F1

Ours

92.6 F1

Effective Inference for Generative Neural Parsing

94.3 F1

Ours

+1.7 F1

Over Previous SoTA*

Learning Curve on New Domains

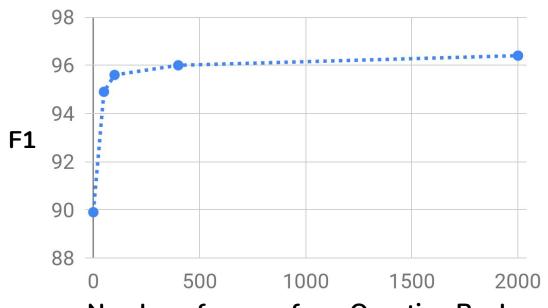
Adapting Using Partial Annotations

Question Bank (Judge et al., 2006)

- 4,000 questions.
- In contrast, PTB has few questions.

Who is the author of the book, ``The Iron Lady: A Biography of Margaret Thatcher''?

Do We Need Domain Adaptation?

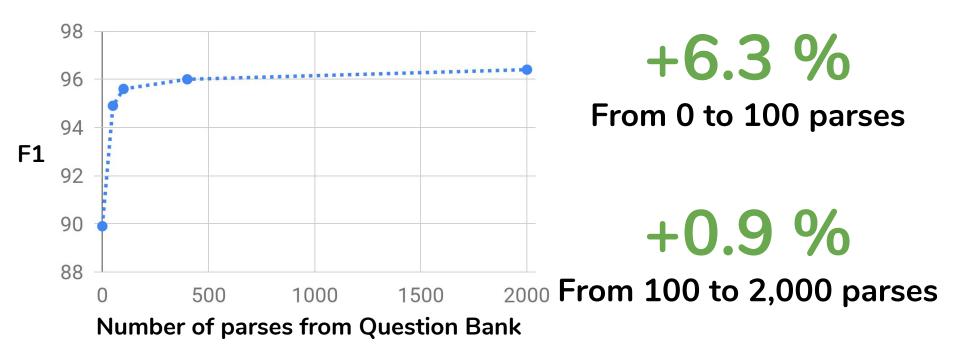


Number of parses from Question Bank

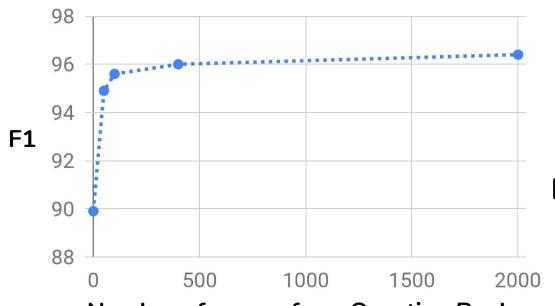
+7.2 %

Training on QB

How Much Data Do We Need?



How Much Data Do We Need?



Not Much

Improvements taper quickly

Number of parses from Question Bank

Learning Curve on New Domains

Adapting Using Partial Annotations

Geometry Problems (Seo et al., 2015)

In the diagram at the right, circle O has a radius of 5, and CE = 2. Diameter AC is perpendicular to chord BD at E. What is the length of BD?

Biochemistry (Nivre et al., 2007)

Ethoxycoumarin was metabolized by isolated epidermal cells via dealkylation to 7-hydroxycoumarin (7-OHC) and subsequent conjugation.

Setup

Annotator is a parsing expert.

Sees parser output.

Annotated sentences randomly split into train and dev.

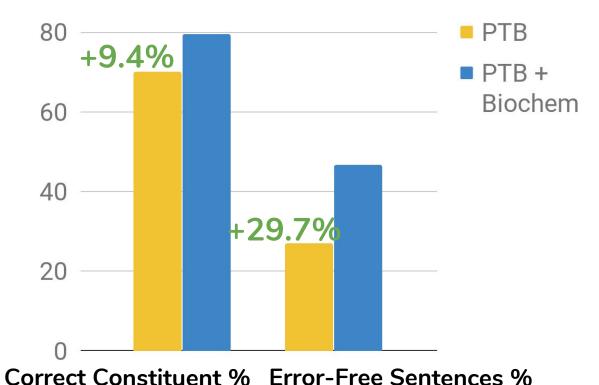
Biochemistry Annotations

610 partial annotations (Avg. 4.6 per sentence) train: 72 sent, dev: 62 sent

```
[ [ In situ ] hybridization ] has revealed a striking subnuclear distribution of [ c-myc RNA transcripts ] .
```

[Cell growth of neuroblastoma cells in [serum containing medium]] was clearly diminished by [inhibition of FPTase]

What do partial annotations buy us?



Geometry Annotations

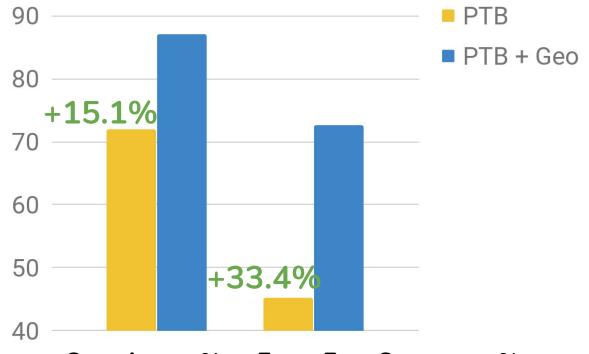
379 partial annotations (Avg. 3 per sentence) train: 63 sent, dev: 62 sent

```
What is [ the value of [ y \{ + z \} ] ]?

[ Diameter AC ] is perpendicular [ to chord BD ] [ at E ] .

Find [ the measure of [ the angle designated by x ] ] .
```

What do partial annotations buy us?



Correct Constituent % Error-Free Sentences %

Iterative Annotation

Error Analysis on Geometry Training Set

44% math syntax

Eg: "dimensions 16 by 8," "BAC = $\frac{1}{4}$ * ACB"

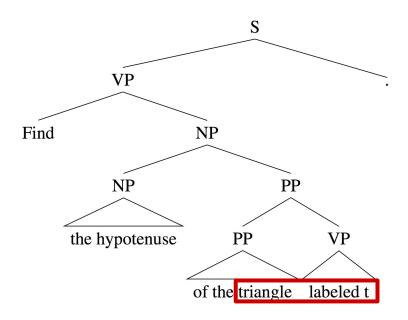
19% right-attaching participial adjectives

Eg: "segment labeled x," "the center indicated"

19% PP-attachment

Right Attaching Participial Adjective Error

Find the hypotenuse of the triangle labeled t.



Iterative Annotation Proof-of-Concept

Invent 3 sentences similar to the incorrect one:

Find the hypotenuse of [the triangle labeled t].

Iterative Annotation Proof-of-Concept

Invent 3 sentences similar to the incorrect one:

Find the hypotenuse of [the triangle labeled t] .

Given [a circle with [the tangent shown]].

Iterative Annotation Proof-of-Concept

Invent 3 sentences similar to the incorrect one:

```
Find the hypotenuse of [ the triangle labeled t ] .
```

```
Given [ a circle with [ the tangent shown ] ] .
```

```
Examine [ the following diagram with [ the square
```

highlighted]].

Performance after Iterative Annotation

Correctly identified constituents:

$$87.0\% \rightarrow 88.6\% (+1.6)$$

Error free sentences:

$$72.6\% \rightarrow 75.8\% (+2.7)$$

Conclusion

- Recent developments make it much easier to train on partial annotations and build custom parsers.
- Making a few partial annotations can lead to significant performance improvements.

Demo: http://demo.allennlp.org/constituency-parsing

Datasets: https://github.com/vidurj/parser-adaptation/tree/master/data

